18.06.2012

Nicht ganz dicht …?

Simulationen: Gummiringe und andere Dichtungen schließen theoretisch eher dicht ab, als bisher gedacht.

Dichtungen erfüllen eine wichtige Funktion in allen möglichen Geräten, vom Raumschiff bis zum Wasserhahn. Die geläufigste Form besteht aus einem Gummiring und zwei festen Anschlussteilen. Wie gut Flüssigkeiten zurückgehalten werden, hängt in erster Linie davon ab, wie eng die Dichtung anliegt. Da alle Oberflächen auf mikroskopischer Ebene uneben und rau sind, liegen Dichtungsring und Anschlussstück nie völlig lückenlos aufeinander. In die kleinen Poren und Kanäle an der Kontaktstelle dringt Flüssigkeit ein, die über nach draußen durchgehende Wege austritt. Verhindern lässt sich das, indem man die Dichtung fester anzieht. Das elastische Gummi wird dann in die mikroskopischen Unebenheiten gepresst, die Kontaktfläche vergrößert sich und verschließt mehr Lücken, sodass weniger Flüssigkeit entweicht.

Abb.: Je stärker die Dichtung auf die Unterlage gepresst wird, desto mehr Erhöhungen der Oberfläche werden in den elastischen Kunststoff gedrückt – und desto größer ist die Kontaktfläche. (Bild: FZJ)

Mit ihrer Arbeit tragen Wissenschaftler vom Forschungszentrum Jülich und der Universität des Saarlandes dazu bei, besser zu verstehen, was passiert, wenn eine Dichtung leckt. Theoretische Modelle konnten die Zusammenhänge bisher nur unzureichend beschreiben. Ältere Modelle vernachlässigten die Elastizität des Dichtungsmaterials, anders als die aktuelle Theorie von Bo N. J. Persson, einem Mitautor der Studie aus dem Jülicher Peter-Grünberg-Institut. Diese enthielt allerdings einige nicht bestätigte Annahmen: „Die Vorhersagen waren besser, als sie sein sollten“, berichtet Martin Müser, Leiter des Lehrstuhls für Materialsimulation der Universität des Saarlandes und der Forschungsgruppe „Computational Materials Physics“ im John-von-Neumann-Institut für Computing am Forschungszentrum Jülich. „Mit den Simulationen wollten wir die Vorgänge auf mikroskopischer Ebene besser verstehen, als es experimentell möglich ist.“

Abb.: Simulation der Kontaktstellen von Dichtung und Anschlussstück, durch die Lücken zwischen den beiden Oberflächen kann Flüssigkeit ausströmen. (Bild: M. Müser, U. d. Saarlandes)

Überraschenderweise müssen sich demnach nur 42 Prozent der Oberflächen von Dichtung und Anschlussstück direkt berühren, um die Verbindung undurchlässig abzuschließen – und nicht 50 Prozent, wie von bisherigen Theorien vorhergesagt. Grund dafür ist in erster Linie eine präzisere Ermittlung der Kontaktfläche. Die Forscher hatten erstmals die Elastizität des Dichtungsmaterials in die Computersimulationen miteinbezogen. Dabei zeigte sich: Mikroskopisch kleine Erhöhungen der Oberfläche, die in das weiche Gummi gepresst werden, berühren die Dichtung nicht vollständig, sondern lassen weitere kleine Lücken entstehen. Das Ergebnis könnten dazu beitragen, die Durchlässigkeit von alternden Dichtungen besser einzuschätzen. Die Jülicher Forschungsgruppe arbeitet bereits mit einem Unternehmen aus der Medizintechnik zusammen, um die Leckrate von Gummistopfen für Spritzen zu berechnen.

FZJ / OD

Weiterbildung

Weiterbildungen im Bereich Quantentechnologie
TUM INSTITUTE FOR LIFELONG LEARNING

Weiterbildungen im Bereich Quantentechnologie

Vom eintägigen Überblickskurs bis hin zum Deep Dive in die Technologie: für Fach- & Führungskräfte unterschiedlichster Branchen.

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

Meist gelesen

Themen