04.08.2014

Nur der Spin zählt

Wie Neutronenstreuung belegt, spielen Dotierungseffekte bei Hochtemperatur-Supraleitern keine Rolle für Entstehung nematischer Phasen.

Weltweit versuchen Wissenschaftler, das Phänomen des verlustlosen Stromtransports durch Hochtemperatur-Supraleiter zu verstehen. Materialien, die diesen Effekt auch bei Raumtemperatur zeigen, hätten ein riesiges technisches Potenzial. Änderungen in der Symmetrie der elektromagnetischen Phasen von Hochtemperatur-Supraleitern nahe der Sprungtemperatur konnte man kürzlich kleinsten Verunreinigungen zuschreiben. Ein internationales Wissenschaftlerteam fand nun heraus, dass diese Änderungen allein der Dynamik der Elektronenspins zuzuschreiben sind und nicht auf einem Dotierungseffekt beruhen.

Abb.: Jitae Park am Dreiachsen-Spektrometer PUMA (Bild: V. Lannert, DAAD)

Wo sich in einem Kristall Atomkerne und Bindungselektronen aufhalten, legt die Kristallstruktur fest. Die Elektronen besitzen aber darüber hinaus den Spin. Durch die Kopplung vieler Spins können sich in einem Kristall elektromagnetische Bereiche mit einer Vorzugsrichtung ausbilden, sogenannte nematische Phasen. In diesen sehen viele Wissenschaftler einen Schlüssel zum Verständnis des Phänomens der Hochtemperatur-Supraleitung. Eine Gruppe von Wissenschaftlern hatte bei Untersuchungen mit einem Rastertunnelmikroskop kleinste Verunreinigungen entdeckt. Sie vermuteten daher, dass diese für die Ausbildung der nematischen Phasen verantwortlich seien – ähnlich wie bei Silizium, das erst durch Dotierung mit kleinsten Verunreinigungen leitfähig wird.

Dass dem nicht so ist, sondern ein ganz anderer Effekt zugrunde liegt, zeigten nun Jitae Park, Wissenschaftler der Technischen Universität München (TUM) und seine Kollegen vom Beijing National Laboratory for Condensed Matter Physics und aus dem Department of Physics and Astronomy der Rice University in Houston, Texas.

Mit dem Dreiachsenspektrometer PUMA im Heinz Maier-Leibnitz Zentrum in Garching untersuchten sie Proben eines eisenhaltigen Hochtemperatur-Supraleiters bei verschiedenen Temperaturen und unter Zugabe einer winzigen Menge Nickel. Dabei stellten sie fest, dass das Auftreten der nematischen Phase in keiner direkten Beziehung zur „Verunreinigung“ durch Nickel steht. Sehr stark abhängig ist das Entstehen der nematischen Phasen dagegen von kollektiven Veränderungen der Spins der Elektronen. Sie entstehen deutlich oberhalb der Sprungtemperatur, bei der die Supraleitung einsetzt. In dem Augenblick, in dem die Supraleitung ihr Maximum erreicht, verschwinden die nematischen Phasen vollständig.

„Mit unserem Experiment haben wir gezeigt, dass die Hochtemperatursupraleitung nicht auf einem Dotierungseffekt beruht, sondern Ausdruck einer sich sprunghaft ändernden Vorzugsrichtung der Elektronenbewegung ist“, sagt Jitae Park, der das Experiment an der Forschungs-Neutronenquelle (FRM II) der TU München durchführte. „Damit kann sich die Forschung in Zukunft auf die Beziehung zwischen der Spin-Dynamik in nematischen Phasen und der Hochtemperatur-Supraleitung konzentrieren.“

Streuuntersuchungen zum Magnetismus sind extrem aufwändig, denn sie erfordern meist zahlreiche Experimente an verschiedenen Neutronenquellen weltweit, um vollständige Daten zu erhalten. In diesem Fall entstanden die Messdaten durch eine Serie geschickt entworfener Experimente in der Rekordzeit von nur vier Wochen am Instrument PUMA.

Eine besondere Herausforderung war das Experiment darüber hinaus, weil die Forscher nur sehr kleine Kristalle einsetzen konnten. Als Untersuchungsmaterial wählten die Wissenschaftler ein Eisenpniktid, einer Verbindung aus Eisen, Barium und Arsen, dem sie geringe Mengen an Nickel zusetzten. Dieses Material bildet aber unter Normalbedingungen Zwillingskristalle, an denen nematische Phasen nicht zu messen gewesen wären. „Zwar lässt sich die Zwillingsbildung durch Druck verhindern“, sagt Jitae Park, „doch dadurch konnten wir nur sehr kleine Kristalle verwenden.“ Weil die Garchinger Forschungs-Neutronenquelle über einen sehr hohen Neutronenfluss verfügt, entschlossen sich die Wissenschaftler daher, das Experiment am FRM II durchzuführen.

TU München / DE

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

Virtuelle Jobbörse

Virtuelle Jobbörse
Eine Kooperation von Wiley-VCH und der DPG

Virtuelle Jobbörse

Innovative Unternehmen präsentieren hier Karriere- und Beschäftigungsmöglichkeiten in ihren Berufsfeldern.

Die Teilnahme ist kostenfrei – erforderlich ist lediglich eine kurze Vorab-Registrierung.

Meist gelesen

Themen