Optische Wirbel für die Trennung chiraler Moleküle
Helikaler Dichroismus im Röntgenbereich unterscheidet Enantiomere effizienter.
Mithilfe einer neuen Methode lassen sich spiegelbildliche Substanzen besser voneinander unterscheiden. Das ist unter anderem bei der Herstellung von Arzneimitteln wichtig, weil die beiden Varianten völlig unterschiedliche Wirkungen im menschlichen Körper entfalten können. Nun hat ein Zusammenschluss von Forschenden vom PSI, der EPFL und der Universität Genf eine neue Methode entwickelt, mit der sich Enantiomere besser voneinander unterscheiden und somit trennen lassen: den helikalen Dichroismus im Röntgenbereich.
Die bisher etablierte Methode, mit der Enantiomere unterschieden werden, ist der zirkulare Dichroismus, abgekürzt CD. Hierbei wird zirkular polarisiertes Licht durch die Probe geschickt. Dieses Licht wird von den Enantiomeren unterschiedlich stark absorbiert. CD ist in der analytischen Chemie, in der biochemischen Forschung sowie in der Pharma- und Lebensmittelindustrie weit verbreitet. Allerdings sind bei CD die Signale von Natur aus sehr schwach: Die Lichtabsorption der beiden Enantiomere unterscheidet sich nur um knapp ein Zehntel Prozent. Es existieren verschiedene Strategien zur Verstärkung der Signale, die jedoch nur geeignet sind, wenn die Probe in der Gasphase vorliegt. Ein Großteil der Chemie und Biochemie jedoch wird in flüssigen Lösungen betrieben, vor allem in Wasser.
Die neue Methode nutzt dagegen den helikalen Dichroismus, kurz HD. Der Effekt, der diesem Phänomen zugrunde liegt, ist statt in der Polarisierung des Lichts in dessen Form zu finden: Die Wellenfront ist hierbei schraubenförmig gekrümmt. An der Synchrotron Lichtquelle Schweiz SLS konnten die Forschenden erstmals erfolgreich zeigen, dass sich auch mit schraubenförmigem Röntgenlicht Enantiomere unterscheiden lassen. An der cSAXS-Strahllinie der SLS demonstrierten sie dies an einer pulverförmigen Probe des chiralen Metallkomplexes Eisen-tris-Bipyridin, die die Forschenden der Universität Genf zur Verfügung gestellt hatten. Das Signal, das sie erhielten, war um mehrere Größenordnungen stärker als dasjenige, das sich mit CD erreichen lässt. HD lässt sich auch in flüssigen Lösungen nutzen, und erfüllt damit eine ideale Voraussetzung für Anwendungen in der chemischen Analytik.
Entscheidend für das Experiment war, Röntgenlicht mit den genau richtigen Eigenschaften zu erschaffen. Dies gelang den Forschenden mit Spiralzonenplatten, einer besonderen Art von Beugungslinsen, durch die sie das Licht schickten, bevor es auf die Probe traf. „Mit den Spiralzonenplatten konnten wir auf sehr elegante Art unserem Röntgenlicht die gewünschte Form und somit einen Bahndrehimpuls geben. Die Strahlen, die wir so erschaffen, werden auch als optische Wirbel bezeichnet“, sagt Benedikt Rösner, der die Zonenplatten für dieses Experiment entworfen und hergestellt hat. Jérémy Rouxel, Forscher an der EPFL, ergänzt: „Der helikale Dichroismus liefert eine völlig neue Art der Licht-Materie-Wechselwirkung. Wir können ihn für die Unterscheidung von Enantiomeren perfekt ausnutzen.“
PSI / JOL