01.04.2011

Optischer Schalter aus einzelnen Molekülen

Ein biophysikalischer Ansatz ermöglicht die gezielte Manipulation der Ausbreitungsrichtung von Licht auf Molekülebene.

Ein biophysikalischer Ansatz ermöglicht die gezielte Manipulation der Ausbreitungsrichtung von Licht auf Molekülebene.

Physiker der Ludwig-Maximilians-Universität in München haben in einem neuartigen Ansatz gezeigt, wie die Ausbreitungsrichtung von Licht auf der Ebene einzelner Moleküle manipuliert werden kann. Dazu platzierten die Biophysiker eine Kaskade von vier verschiedenen Fluoreszenz-Farbstoffmolekülen auf einer DNA-Plattform im Nanometer-Maßstab. Mithilfe eines sogenannten „Springer“-Farbstoffs gelang es ihnen, die Richtung des Lichtweges bzw. des Energietransfers zu kontrollieren. Die Ergebnisse konnten anschließen mit einer neuen Vier-farben-Einzelmolekültechnik sichtbar gemacht werden.

Abb.: Ein Steckbrett aus DNA wird verwendet um einzelne Farbstoffmoleküle auf Nanometer genau zu positionieren. Mit Hilfe eines grünen "Springer"-Farbstoffs wird Licht entweder zum roten oder infraroten Ausgangsfarbstoff gelenkt. (Bild: LMU München)

Um Licht auf der Nanoskala zu kontrollieren, bedarf es neuer optischer Bauteile, die als Drähte und Schalter fungieren. Als eine Art Draht könnte der Energietransfer zwischen einzelnen Farbstoffen wirken. In der Natur gibt es für diesen Transfer bereits ein prominentes Beispiel: In der Photosynthese wird Lichtenergie in Lichtsammelkomplexen zwischen Molekülen transportiert. Das Prinzip dieses sogenannten Fluoreszenz-Resonanzenergietransfers (FRET) nutzte das Team von Philip Tinnefeld, um Licht von Fluoreszenz-Farbstoffmolekül zu Fluoreszenz-Farbstoffmolekül zu leiten. Dazu setzen die Wissenschaftler Farbstoffe ein, die ihr Absorptionsmaximum im blauen, grünen, roten und infraroten Wellenlängenbereich besitzen.

Damit die Moleküle miteinander wechselwirken können, dürfen sie nur rund fünf Nanometer auseinander liegen. Dies gelingt den Wissenschaftlern mithilfe eines winzigen Steckbrettes, für das sie das Biomolekül DNA als Baustoff verwenden. Zunächst binden sie jedes Farbstoffmolekül an einen kurzen künstlichen DNA-Strang. Diese beladenen Abschnitte und rund 200 weitere kurze DNA-Stränge dienen anschließend als eine Art Heftklammern: Sie helfen einem einzelnen, sehr langen DNA-Faden dabei, sich selbstständig in eine zwei- oder auch dreidimensionale Struktur zu falten. Diese ist derart vordefiniert, dass die Farbstoffmoleküle optimal zueinander gelegen aus diesem „DNA-Teppich“ herausschauen. Dieser ist typischerweise weniger als 100 nm x 100 nm groß. Der gezielte Einsatz dieser molekularen Selbstorganisation und -faltung wird als „DNA-Origami“ bezeichnet, angelehnt an die japanische Papierfalt-Technik.

Im Experiment regen die Biophysiker nun zunächst den blauen „Eingangs“-Farbstoff mit der passenden Lichtwellenlänge an. Dieser wird daraufhin einen Teil der Anregungsenergie mittels FRET als Fluoreszenzstrahlung auf einen nahegelegenen anderen Farbstoff übertragen. Hier sitzt der grüne „Springer“-Farbstoff - je nachdem, wo dieser positioniert wird, leitet er die Lichtenergie entweder in Richtung des roten oder in Richtung des infraroten „Ausgangs“-Farbstoffs. Welcher Weg eingeschlagen wurde, zeigt die Farbe des Ausgangssignals.

In diesem neuartigen Ansatz kombinierte das Team von Tinnefeld erstmals die Nutzung von DNA als Trägermaterial mit Vier-Farben Einzelmolekül Spektroskopie, um das Schalten von Energietransfer-Pfaden zu visualisieren. Das neue Verfahren eignet sich außerdem für hochsensitive Analytik. Dazu können die Wissenschaftler das System so konstruieren, dass sie über Lichtsignale schon die Bindung einzelner Moleküle einer gesuchten Substanz nachweisen können. (NIM)

Ludwig-Maximilians-Universität München / AL


Weitere Infos

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

EnergyViews

EnergyViews
Dossier

EnergyViews

Die neuesten Meldungen zu Energieforschung und -technologie von pro-physik.de und Physik in unserer Zeit.

Meist gelesen

Themen