Optoplasmonischer Sensor für schnelle Milchtests
In einer einzigen Messung können in fünf Minuten sechs Inhaltsstoffe analysiert werden.
Schädliche Organismen können durch Euterinfektionen in die Milch gelangen. Chemische Stoffe wie Antibiotika und Pestizide führen über das Futter oder durch unzureichende Kontrollen zu Kontaminationen führen. Um den Eintritt verunreinigter Milch in die Nahrungskette zu verhindern, werden über den gesamten Produktionsprozess und die gesamte Lieferkette Kontrollen durchgeführt. Doch diese Standardtests sind mit einem hohen Kosten- und Zeitaufwand verbunden. Im EU-Projekt MOLOKO – Multiplex phOtonic sensor for pLasmonic-based Online detection of contaminants in milK – haben nun zwölf Partner aus sieben Ländern eine Lösung gefunden, Verunreinigungen in der Milch erheblich günstiger und schneller zu erkennen: Ein neuer optoplasmonischer Sensor soll als Frühwarnsystem und als zusätzliche Kontrolle fungieren, bevor die Milch in den Tank kommt. In etwa fünf Minuten soll er sie mit einer einzigen Messung auf insgesamt sechs Inhaltsstoffe analysieren. Der Sensor ist mit spezifischen Antikörpern für verschiedene Parameter von Milchsicherheit und -qualität funktionalisiert und ermöglicht die automatische quantitative Analyse direkt vor Ort in den Milchbetrieben.
Das komplette System besteht aus einem mikrofluidischen, wiederverwendbaren Chip, organischen lichtemittierenden Transistoren (OLET) oder Dioden (OLED), organischen Photodetektoren (OPD) als Sensor, einem nanostrukturierten plasmonischen Gitter und den spezifischen Antikörpern. Das Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP entwickelt den organischen Photodetektor, das Fraunhofer-Institut für Elektronische Nanosysteme ENAS den mikrofluidischen Chip. Der OLET und das photonische Gitter werden vom CNR-ISMN in Bologna gemeinsam mit der italienischen Firma Plasmore Srl in Pavia entwickelt.
„Das Besondere an unserem Chip ist, dass man ihn wiederverwenden kann. Dies gelingt, indem die Zielmoleküle mit Hilfe eines Regenerationspuffers von den immobilisierten Antikörpern lösen, so dass diese sich wieder für einen erneuten Nachweis nutzen lassen“, sagt Andreas Morschhauser, Wissenschaftler am Fraunhofer ENAS. Der Chip ist für hundert Messungen ausgelegt. Mit jeder Messung können sechs Parameter oder Schadstoffe und Proteine analysiert werden. Hierfür entwickeln Morschhauser und seine Kollegen das mikrofluidische System in der Form einer austauschbaren, automatisierten und miniaturisierten Kartusche. Neben den gewonnenen Informationen zur Milch erlauben die gemessenen Parameter aber auch Rückschlüsse auf die Gesundheit jeder einzelnen Kuh, Landwirte erhalten vielfältige Informationen über deren Verfassung. Beispielsweise lassen sich so frühzeitig Infektionen erkennen und somit umgehend behandeln. Eine frühzeitige Behandlung kann zu einem umsichtigen Einsatz von Antibiotika und damit auch zu deren Reduzierung beitragen.
„Der Transistor erzeugt Licht, das auf das mit Antikörpern beschichtete Gitter fällt. Diese sind spezifisch für die relevanten Inhaltsstoffe. Wird die Milch nun über die Antikörper gespült, so binden die Zielmoleküle an ihnen. Dadurch ändert sich der Brechungsindex in der Umgebung des Gitters, was zu einer Änderung der Reflektion des Lichts führt. Das reflektierte Licht fällt auf den Photodetektor, der die minimale Änderung der Brechzahl misst“, sagt Michael Törker, Wissenschaftler am Fraunhofer FEP. Der grundlegende Effekt der Oberflächenplasmonenresonanz tritt an speziellen strukturierten Nanogittern auf. Der Effekt erlaubt schnelle und sehr sensitive Messungen.
Der Biosensor soll an verschiedenen Stellen der Wertschöpfungskette eingesetzt werden können: sowohl als Laborgerät als auch direkt in Melkanlagen integriert. Das System eignet sich jedoch nicht nur für den Qualitätscheck von Milch. Mit dem optoplasmonischen Sensor könnten in Zukunft auch andere Flüssigkeiten wie beispielsweise Bier oder Wasser analysiert werden. Hierfür ist lediglich eine Anpassung der immobilisierten Fängermoleküle und der notwendigen Reaktionspuffer notwendig. Dafür müssen nur die Fängermoleküle ausgetauscht und entsprechend angepasst werden.
Fh.-FEP / JOL
Weitere Infos