29.05.2012

Ordentliche magnetische Kühlung

Forscher aus Dresden schlagen magnetische Formgedächtnislegierungen aus Nickel, Mangan, Indium und Kobalt als Material für „magnetische Kühlschränke“ vor.

Weltweit wird ein großer Teil der produzierten Elektroenergie zur Kühlung verwendet. Die effizienteste dafür etablierte Technik, die Kompressionskühlung, hat einen Wirkungsgrad von maximal 45 Prozent. Einen wesentlich besseren Wirkungsgrad weisen Kühlgeräte auf, die auf dem magnetokalorischen Effekt beruhen: Wird ein konventionelles magnetokalorisches Material in ein Magnetfeld gebracht, richten sich seine zunächst ungeordneten magnetischen Momente parallel zum angelegten Feld aus. Dadurch erhöht sich der magnetische Ordnungszustand. Die Zunahme der magnetischen Ordnung wird bei geeigneter Prozessführung dadurch kompensiert, dass sich die Schwingungen der Atome auf ihren Gitterplätzen verstärken, was zu einer Temperaturerhöhung führt. Kühlt man das erwärmte Material im Magnetfeld wieder auf die Ausgangstemperatur ab und schaltet dann das Magnetfeld aus, findet der umgekehrte Prozess statt. Das Material kühlt sich weiter ab und erreicht eine nun einige Grad Celsius tiefere Temperatur als zu Beginn des Zyklus. In diesem Zustand kann das Material Wärme aufnehmen und somit als Kühlmittel dienen.

Abb.: Mikroskopische Aufnahme der Zwillingsstruktur in der Nickel-Mangan-Legierung mit Indium und Kobalt. (Bild: IFW Dresden)

Deutlich größere magnetokalorische Effekte lassen sich erzielen, wenn die Änderung der magnetischen Ordnung von einem strukturellen Phasenübergang begleitet wird. Die Dresdner Forscher vom Leibniz-Institut für Festkörper- und Werkstoffforschung untersuchten eine Nickel-Mangan-Legierung näher, bei der ein umgekehrter magnetokalorischer Effekt auftritt. Das bedeutet, dass die magnetische Ausrichtung eine moderate Temperaturerhöhung zur Folge hat, während die strukturelle Umwandlung zu einer starken Abkühlung des Materials führt. Die Summe dieser entgegengesetzt wirkenden Effekte ergibt eine Kühlung des Materials bereits beim Anlegen des Magnetfeldes.

Eine Möglichkeit, zu effektiveren magnetischen Kühlsystemen zu gelangen, sehen sie darin, diesen strukturellen Beitrag zum magnetokalorischen Effekt durch die optimale Wahl der chemischen Zusammensetzung zu maximieren. Hierdurch wird eine Temperaturänderung von bis zu sechs Grad bei moderaten Magnetfeldern von zwei Tesla erreicht, wobei die strukturellen Änderungen im Kristallgitter am meisten dazu beitragen. Aus theoretischen und modellhaften Betrachtungen leiten die Forscher ab, dass für hohe Temperaturänderungen in magnetokalorischen Materialien eine vollständige Phasenumwandlung in einem engen Temperaturintervall und eine optimale Feldabhängigkeit der Übergangstemperatur nötig sind.

Außerdem rückten die Forscher einem weiteren Problem in der magnetokalorischen Anwendung der Nickel-Mangan-Legierungen auf den Leib: Die erforderlichen hohen Temperaturänderungen in diesen Legierungen werden bisher nur im ersten Zyklus erreicht und nehmen in den folgenden Zyklen drastisch ab. Sie fanden heraus, dass das Anlegen eines äußeren Drucks, das zyklische Verhalten deutlich verbessert, und dass die genaue Einstellung der kristallografischen Gitterparameter und das Stapeln von Schichten bestimmter magnetokalorischer Legierungen den Arbeitsbereich, das heißt das Kühlfenster, signifikant erweitern.

IFW Dresden / PH

Virtuelle Jobbörse

Virtuelle Jobbörse
Eine Kooperation von Wiley-VCH und der DPG

Virtuelle Jobbörse

Innovative Unternehmen präsentieren hier Karriere- und Beschäftigungsmöglichkeiten in ihren Berufsfeldern.

Die Teilnahme ist kostenfrei – erforderlich ist lediglich eine kurze Vorab-Registrierung.

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

Meist gelesen

Themen