Peanuts aus dem All
Neue Emmy-Noether-Gruppe in Frankfurt erforscht seltene Asche-Teilchen aus Supernovae.
Alle Elemente im Universum sind aus der Verschmelzung von Atomkernen in Sternen entstanden. Als Asche verteilen sie sich am Ende der Lebenszeit eines Sterns im Weltraum, oftmals verbunden mit einer hell leuchtenden und weithin sichtbaren Supernova. Das grobe Bild ist klar, doch die Entstehung einiger seltener schwerer Isotope mit besonders vielen Protonen – von den Physikern spaßeshalber „Peanuts“ genannt – ist bis heute rätselhaft. Die Kernphysikerin Dr. Kerstin Sonnabend will die Kernreaktionen bei einer bestimmten Art von Supernova nun im Labor nachahmen, um die Vorgänge im Inneren der Sterne zu verstehen. Die Deutsche Forschungsgemeinschaft unterstützt die Nachwuchsforscherin in den nächsten fünf Jahren im Rahmen des Emmy-Noether-Programms, das ihr den Aufbau einer eigenen Forschergruppe im Gebiet der Nuklearen Astrophysik erlaubt.
Abb.: Forschungsschwerpunkt der Frankfurter AG Experimentelle Astrophysik liegt in der Bestimmung von Wirkungsquerschnitten wichtiger Reaktionen bei Sternexplosionen. (Bild: GU)
„Mich fasziniert immer wieder, dass die Vorgänge in den kleinsten Bausteinen der Materie so einen großen Einfluss auf die sichtbare Struktur unseres Universums haben“, sagt die 36jährige und fügt hinzu: „Jedes Kohlenstoff-Atom in unserem Körper war einmal Sternenstaub“. In ihrem Forschungsprojekt beantwortet sie Fragestellungen aus der Astrophysik mit Methoden der Kernphysik: Deswegen schaut die Experimentalphysikerin auch nicht durch ein Teleskop, sondern arbeitet an der Frankfurter Neutronenquelle FRANZ, die im kommenden Jahr in Betrieb genommen wird.
Praktisches Arbeiten hat Kerstin Sonnabend schon während ihres Studiums der reinen Theorie vorgezogen. Sie entwickelt mit ihrer Gruppe Proben aus einem langlebigen radioaktiven Ausgangsmaterial, das am Synchrotron Labor in Oslo speziell für diese Versuche hergestellt wird. In Frankfurt wird das Material dann einem Protonenstrahl mit hoher Teilchendichte ausgesetzt – so erhöht sich die Chance, dass die äußerst seltenen Kernreaktionen eintreten. Gleichzeitig gilt es zu verhindern, dass die Probe unter dem intensiven Protonenbeschuss schmilzt, weshalb eine spezielle Kühlung erdacht werden muss. Auch die Elektronik für den Detektor, die digitale Datenauslese und die Software für die Daten-Analyse werden in ihrer Gruppe entwickelt.
Die Mutter zweier Töchter studierte an der Technischen Universität Darmstadt Physik, Mathematik und Informatik für das Gymnasiale Lehramt und schloss mit dem Ersten Staatsexamen ab. Ihr Einstieg in die Forschung begann mit der Doktorarbeit; anschließend war sie Assistentin am Institut für Kernphysik in Darmstadt.
GU / OD