07.08.2006

Perfekte Metallinseln

Dank perfekter Metallinseln auf organischen Schichten lassen sich organische Chips einfacher herstellen.



Dank perfekter Metallinseln auf organischen Schichten lassen sich organische Chips einfacher herstellen.

Wenn der Joghurtbecher seinen Preis gleich an die Kasse funkt, ist wahrscheinlich ein organischer Chip im Spiel. Aufgedruckt auf Konsumartikel könnten organische Einwegchips vieles leichter und komfortabler machen - wenn sie einfacher und kostengünstiger herstellbar wären als jetzt noch. Aber die ultradünnen organischen Halbleiterschichten haben ihre Tücken: Für die herkömmliche Art, elektrische Kontakte aufzubringen, sind sie zu empfindlich. Den Erfolg einer neuen elektrochemischen Methode testeten jetzt Bochumer Chemiker um Christof Wöll mit dem hochempfindlichen „Schmetterling“, einer Kombination aus Rasterelektronenmikroskop und Rastertunnelmikroskop. Fazit: Die in Ulm entwickelte Methode funktioniert, man kann sich an die Entwicklung eines Prototyps machen. Über ihre Ergebnisse berichten die Forscher in einem „Hot Paper“ der Zeitschrift „Physical Chemistry Chemical Physics“ (PCCP).

Abb.: Vor dem Hintergrund einer mikroskopischen Aufnahme einzelner Pd-Inseln auf einer organischen Dünnstschicht sind Strom-Spannungs-Kurven zu sehen, die nach Kontaktieren der nanoskaligen Metallinseln mit einer scharfen Metallspitze (Schema unten rechts) gemessen wurden. Die Inseln (dunkelblaue Kurve) unterscheiden sich deutlich von einem "normalen" metallischen Substrat. (Quelle: RUB)

Eine der Hauptherausforderungen im Bereich der organischen Elektronik ist die Herstellung guter elektrischer Kontakte zu den empfindlichen und gleichzeitig weichen molekularen organischen Materialien. Bei den in der Halbleiterelektronik momentan dominierenden Materialien, Silizium und Germanium, spielt dieses Problem keine große Rolle: Die Metalle können einfach aufgedampft werden. Die weichen molekularen Materialien zeigen aber eine Reihe unerwünschter Effekte, wenn auf diese Weise eine Elektrode aufgebracht wird. Diese reichen von einer Eindiffusion mit entsprechenden, unerwünschten Dotierungseffekten (Veränderung von Materialeigenschaften) bis hin zu einer chemischen Reaktion der organischen Moleküle mit den Metallatomen und nachfolgender Zersetzung.

Bei dem wichtigsten Bauteil, das zurzeit mithilfe organischer Materialien hergestellt wird, dem organischen Feldeffekttransistor (engl.: Organic Field Effect Transistor, OFET), werden die organischen Materialien zum Teil in nur ganz dünnen Schichten eingesetzt. Hier führt die Eindiffusion der Metallatome sogar zu elektrischen Kurzschlüssen: Das Bauteil wird dann gänzlich unbrauchbar.

Elektrochemische Verfahren sind eine Alternative, um metallische Kontakte auf dünne organische Schichten aufzubringen. Wie gut das funktioniert, lässt sich allerdings nur schwierig untersuchen. Mit einem speziellen, höchstauflösenden Instrument („Schmetterling“) konnten die Bochumer Forscher nun zeigen, dass eine kürzlich von Kollegen an der Universität Ulm entwickelte elektrochemische Methode hält, was sie verspricht: Die Forscher kontaktierten die Palladiumkontakte auf der dünnen organischen Schicht mit einer atomar scharfen Metallspitze. So konnten sie eine kleine Spannung anlegen und das Verhalten des Kontaktes testen. „Im Bereich kleiner angelegter Spannungen war gar kein elektrischer Strom nachweisbar“, erklärt Christof Wöll, „das heißt, es handelt sich wirklich um isolierte Metallinseln.“ Die Ulmer Methode erlaubt es, Kontakte aufzubringen, ohne das organische Material zu schädigen und vor allem ohne Kurzschlüsse zu erzeugen.

Dieses Ergebnis überraschte die Forscher zunächst sogar, da selbst ohne Kurzschluss wegen der geringen Dicke der organischen Schicht ein so genannter Tunnelstrom auftreten sollte. „Die überraschend hohe Isolation bei Spannungen kleiner 0,7 Volt ist auf einen quantenmechanischen Effekt zurückzuführen, der als Coulomb-Blockade bezeichnet wird und normalerweise nur bei sehr tiefen Temperaturen auftritt. In unserem Fall sehen wir diesen Effekt schon bei Zimmertemperatur, weil die Kontakte nanoskalig und die organischen Schichten sehr dünn sind“, so Wöll.

Momentan arbeiten die Forscher daran, mittels Methoden der höchstauflösenden Lithographie in Zusammenarbeit mit Kollegen aus der Elektrotechnik die Palladium-Elektroden fest zu verdrahten und damit ein Prototyp-Bauteil, einen organischen Feldeffekttransitor (OFET) herzustellen. In ersten Experimenten hat sich schon gezeigt, dass dazu die Synthese neuer organischer Moleküle zur Herstellung der selbstorganisierenden organischen Schicht (Self Assembled Monolayer, SAM) erforderlich ist, die zurzeit in Zusammenarbeit mit einem Kollegen von der Universität Hamburg bearbeitet wird.

Quelle: Ruhr-Universität Bochum

Weitere Infos:

  • Originalveröffentlichung:
    O. Shekhah, C. Busse, A. Bashir, F. Turcu, X. Yin, P. Cyganik, A. Birkner, W. Schuhmann und Ch. Wöll, Electrochemically deposited Pd islands on an organic surface: the presence of Coulomb blockade in STM I(V) curves at room temperature, Physical Chemistry Chemical Physics (PCCP) 8, 3375, (2006).
    http://dx.doi.org/10.1039/b606488d (frei!)
  • Lehrstuhl für Physikalische Chemie I, Fakultät für Chemie der Ruhr-Universität Bochum:
    http://www.pc.ruhr-uni-bochum.de

Virtuelle Jobbörse

Virtuelle Jobbörse
Eine Kooperation von Wiley-VCH und der DPG

Virtuelle Jobbörse

Innovative Unternehmen präsentieren hier Karriere- und Beschäftigungsmöglichkeiten in ihren Berufsfeldern.

Die Teilnahme ist kostenfrei – erforderlich ist lediglich eine kurze Vorab-Registrierung.

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

Meist gelesen

Themen