Perowskite aus Algen
Algen und andere kalzitbildende einzellige Organismen eignen sich zur Herstellung von Perowskiten mit steuerbaren elektrooptischen Eigenschaften.
Perowskite sind Materialien, die aufgrund ihrer bemerkenswerten elektrischen, optischen und photonischen Eigenschaften für eine Vielzahl von Anwendungen immer beliebter werden. Perowskite haben das Potenzial, die Bereiche Solarenergie, Sensorik und Detektion, Photokatalyse sowie Laser und andere zu revolutionieren. Die Eigenschaften von Perowskiten lassen sich durch Veränderung ihrer chemischen Zusammensetzung und ihrer inneren Architektur, einschließlich der Verteilung und Orientierung der Kristallstruktur, an bestimmte Anwendungen anpassen. Derzeit sind die Möglichkeiten zur Beeinflussung dieser Eigenschaften durch die Herstellungsmethoden stark eingeschränkt. Einem Forschungsteam der TU Dresden ist es gelungen, Perowskite mit einzigartigen Nanoarchitekturen und Kristalleigenschaften aus Algen herzustellen und dabei die jahrelange Evolution dieser einzelligen Organismen zum Vorteil zu nutzen.
„Einzellige Organismen haben über Hunderte von Millionen Jahren auf eine Vielzahl von Umweltfaktoren wie Temperatur, pH-Wert und mechanische Belastung reagiert. Dadurch haben sich einige von ihnen so entwickelt, dass sie absolut einzigartige Biomaterialien herstellen können, die nur in der Natur vorkommen", erklärt Igor Zlotnikov, Forschungsgruppenleiter am B CUBE – Center for Molecular Bioengineering, der die Studie leitete. „Mineralien, die von lebenden Organismen produziert werden, haben oft strukturelle und kristallographische Eigenschaften, die weit über die Produktionsmöglichkeiten heutiger Synthesemethoden hinausgehen.“
Das Team konzentrierte sich auf L. granifera, eine Algenart, die Kalzit zur Schalenbildung verwendet. Ihre kugelförmigen Schalen weisen eine einzigartige Kristallarchitektur auf. Die Kristalle sind radial ausgerichtet, sie wachsen also vom Zentrum der Kugel nach außen. „Mit den heutigen Herstellungsmethoden für Perowskite lassen sich solche Materialien nicht synthetisch herstellen. Wir können jedoch versuchen, die vorhandenen natürlichen Strukturen in funktionelle Materialien umzuwandeln und dabei ihre ursprüngliche Architektur zu erhalten", fügt Zlotnikov hinzu.
Um die natürlichen mineralischen Schalen der Algen in funktionelle Perowskite umzuwandeln, musste das Team chemische Elemente im Kalzit austauschen. Dazu adaptierten sie eine Methode, die von ihren Kooperationspartnern am AMOLF-Institut in Amsterdam entwickelt worden war. Während der Umwandlung konnten die Wissenschaftler verschiedene Arten von Kristallarchitekturen erzeugen, indem sie die chemische Zusammensetzung des Materials veränderten. Auf diese Weise konnten sie die elektrooptischen Eigenschaften fein abstimmen. Durch die Umwandlung der Kalzitschalen in Bleihalogenide mit Jod, Bromid oder Chlorid konnte das Team funktionelle Perowskite herstellen, die so optimiert sind, dass sie nur rotes, grünes oder blaues Licht emittieren.
„Wir zeigen zum ersten Mal, dass Mineralien, die von einzelligen Organismen produziert werden, in technologisch relevante Funktionsmaterialien umgewandelt werden können. Anstatt mit der Natur zu konkurrieren, können wir von ihrer jahrelangen evolutionären Anpassung profitieren", sagt Zlotnikov. Die von seinem Team entwickelte Methode lässt sich in größerem Maßstab anwenden und eröffnet der Industrie die Möglichkeit, Algen und viele andere kalzitbildende einzellige Organismen zur Herstellung funktionaler Materialien mit einzigartigen Formen und kristallographischen Eigenschaften zu nutzen.
TU Dresden / DE