Phosphor für bessere Optoelektronik
Neue Methode eignet sich für die Entwicklung von Materialien für Sensoren oder OLEDs.
Jan. J. Weigand von der Technischen Universität Dresden hat in Zusammenarbeit mit einem interdisziplinären Team eine neuartige Methode entwickelt, um Phosphor- und Stickstoffatome in polyzyklischen Molekülen einzubringen. Diese Methode könnte in Zukunft die Entwicklung neuer Materialien mit spezifischen optoelektronischen Eigenschaften für die Anwendung in organischen Halbleitertechnologien, wie OLEDs oder Sensoren, ermöglichen.
Polyzyklische aromatische Kohlenwasserstoffe, kurz PAKs, spielen eine zentrale Rolle in einer Vielzahl von optoelektronischen Anwendungen, darunter chemische Sensoren, organische Leuchtdioden (OLEDs), organische Feldeffekttransistoren (OFETs) und organische Solarzellen. Um die Leistungsfähigkeit der Bauelemente zu optimieren und deren Vielseitigkeit zu erhöhen, erproben Forschende die Substitution mit verschiedenen Elementen jenseits des traditionellen Kohlenstoffs. Während die Substitution mit Bor, Stickstoff, Sauerstoff und Schwefel bereits umfassend erforscht wurde, stellt die Integration von Phosphor in Kombination mit Stickstoff noch eine große Herausforderung dar.
„In unserer aktuellen Forschung haben wir eine innovative Methode entwickelt, um Phosphor- und Stickstoffatome gezielt in polyzyklische Systeme einzubringen. Diese Methode ermöglichte die Synthese einer breiten Palette von P/N-substituierten Verbindungen, deren physikochemische Eigenschaften in Zusammenarbeit mit Physikerinnen und Physikern der TU Dresden vielschichtig untersucht wurden. Durch die Kombination aus Materialsimulationen und spektroskopischen Messungen konnten wir grundlegende Einblicke in die Struktur-Eigenschafts-Beziehungen der erhaltenen Verbindungen gewinnen“, sagt Weigand.
Die neue Methode ermöglicht den Zugang zur bekannten Stoffklasse der Azaphosphole, die bisher nur sehr umständlich und meist in sehr geringen Ausbeuten zugänglich war. Daher kam sie bisher für (opto-)elektronische Anwendungen nicht in Betracht. „Durch die gezielte Kombination von Phosphor und Stickstoff erhoffen wir uns, die elektronischen und optischen Eigenschaften dieser Verbindungen in einer Weise steuern zu können, die zuvor nicht möglich war. Dies eröffnet spannende Perspektiven für zukünftige Anwendungen in der Optoelektronik und darüber hinaus“, ergänzt Sebastian Reineke, Leiter der Light-Emitting und eXcitonic Organic Semiconductors Gruppe (LEXOS) der TU Dresden.
TU Dresden / JOL
Weitere Infos
- Originalveröffentlichung
J. Fidelius et al.: Convenient access to π-conjugated 1,3-azaphospholes from alkynes via [3 + 2]-cycloaddition and reductive aromatization, Chem, online 22. November 2023; DOI: 10.1016/j.chempr.2023.10.016 - Organische Halbleiter, LEXOS Gruppe, Technische Universität Dresden
- Anorganische Molekülchemie, Technische Universität Dresden