30.08.2022

Photonenverschränkung im Großpaket

Über ein Dutzend Photonen effizient miteinander verschränkt.

Um einen Quantencomputer nutzbringend einzusetzen, braucht es eine größere Zahl von verschränkten Grund­bausteinen für das Ausführen von Rechen­operationen. Ein Team am Max-Planck-Institut für Quanten­optik in Garching hat nun erstmals gezeigt, wie sich das mit Photonen realisieren lässt, die von einem einzelnen Atom ausgesandt werden. In einem optischen Resonator erzeugten die Physiker mittels einer neuen Technik bis zu 14 miteinander verschränkte Photonen, die sich gezielt und sehr effizient in bestimmte quanten­physikalische Zustände bringen lassen. Die neue Methode könnte nicht nur den Bau leistungs­fähiger und robuster Quanten­computer erleichtern, sondern künftig auch bei der sicheren Übertragung von Daten helfen.

 

Abb.: Aufbau des optischen Resonators im Vakuum. Zwischen den konisch geformten...
Abb.: Aufbau des optischen Resonators im Vakuum. Zwischen den konisch geformten Spiegeln im Innern des Halters wird ein einzelnes Rubidium­atom gefangen. (Bild: MPQ)

Die aus dem Blickwinkel der gewohnten Alltagswelt oft bizarr erscheinende Phänomene der Quantenwelt haben längst Eingang in die Technik gefunden. Zum Beispiel die Verschränkung: eine quanten­physikalische Verbindung zwischen Teilchen, die diese auf sonderbare Weise über beliebig weite Distanzen miteinander verbindet. Sie lässt sich etwa in einem Quanten­computer nutzen – einer Rechen­maschine, die anders als ein herkömmlicher Computer zahlreiche mathematische Operationen gleichzeitig ausführen kann. Allerdings: Um einen Quanten­computer gewinnbringend einsetzen zu können, muss darin eine große Zahl miteinander verschränkter Teilchen zusammenwirken.

„Photonen, die Teilchen des Lichts, eignen sich dafür besonders gut, da sie von Natur aus robust und leicht zu manipulieren sind“, sagt Philip Thomas, Doktorand am Max-Planck-Institut für Quanten­optik (MPQ) in Garching bei München. Gemeinsam mit Kollegen der Abteilung Quanten­dynamik unter Leitung von Gerhard Rempe gelang ihm nun ein wichtiger Schritt, um Photonen für technologische Anwendungen wie das Quanten­computing nutzbar zu machen: Das Team erzeugte erstmals auf definierte Weise und mit großer Effizienz bis zu 14 verschränkte Photonen.

„Der Clou bei diesem Experiment war, dass wir ein einzelnes Atom benutzt haben, um die Photonen zu emittieren und gezielt miteinander zu verweben“, sagt Thomas. Dazu platzierten die Max-Planck-Forscher ein Rubidium-Atom in der Mitte eines optischen Hohlraum-Resonators – einer Art Echokammer für elektromagnetische Wellen. Mit Laserlicht bestimmter Frequenz ließ sich der Zustand des Atoms präzise ansprechen. Durch einen zusätzlichen Kontroll­puls lösten die Forscher zudem gezielt die Emission eines Photons aus, das mit dem Quantenzustand des Atoms verschränkt ist.

„Diesen Vorgang wiederholten wir mehrmals und auf eine zuvor festgelegte Weise“, berichtet Thomas. Dazwischen wurde das Atom jeweils auf eine bestimmte Art manipuliert – genauer gesagt: rotiert. So gelang es, eine Kette von bis zu 14 Licht­teilchen zu erzeugen, die durch die atomaren Rotationen miteinander verschränkt und in einen gewünschten Zustand gebracht waren. „Die darin miteinander verbundenen 14 Licht­teilchen sind nach unserem Wissen die größte Zahl an verschränkten Photonen, die bislang im Labor erzeugt wurde“, betont Thomas.

Doch nicht nur die Menge an verschränkten Photonen ist ein wichtiger Schritt hin zur Entwicklung leistungsfähiger Quantencomputer – auch die Art ihrer Erzeugung unterscheidet sich deutlich von herkömmlichen Methoden. „Weil die Kette von Photonen aus einem einzelnen Atom hervorging, ließ sie sich auf deterministische Weise produzieren“, erklärt Thomas. Das bedeutet: Im Prinzip liefert jeder Kontroll­puls tatsächlich ein Photon mit den gewünschten Eigenschaften. Bislang erfolgte die Verschränkung von Photonen meist in speziellen, nichtlinearen Kristallen. Das Manko: Dort entstehen die Lichtteilchen im Wesentlichen zufällig und auf nicht kontrollier­bare Weise. Das begrenzt auch die Zahl an Teilchen, die sich in einem gemeinsamen Zustand bündeln lassen.

Das von dem Garchinger Team verwendete Verfahren hingegen ermöglicht es, grundsätzlich beliebig viele verschränkte Photon zu erzeugen. Zudem ist die Methode besonders effizient – ebenfalls ein für mögliche künftige technische Anwendungen wichtiges Maß: „Durch Messungen an der produzierten Photonen-Kette konnten wir eine Effizienz von annähernd fünfzig Prozent belegen“, sagt Philip Thomas. Das bedeutet: Fast jeder zweite „Knopfdruck“ an dem Rubidium-Atom lieferte ein nutzbares Lichtteilchen – weit mehr als bei früheren Experimenten erreicht worden ist. „Alles in allem beseitigt unsere Arbeit ein seit Langem bestehendes Hindernis auf dem Weg zu skalierbarem, messbasiertem Quanten­computing“, fasst Abteilungs­direktor Gerhard Rempe die Resultate zusammen.

Und noch eine weitere Hürde wollen die Wissenschaftler am MPQ aus dem Weg räumen. So wären für komplexe Rechen­operationen mindestens zwei Atome als Photonen-Quellen in dem Resonator erforderlich. Die Quantenphysiker sprechen von einem zweidimensionalen Cluster-Zustand. „Wir arbeiten bereits daran, diese Aufgabe zu bewältigen“, verrät Philip Thomas. Der Max-Planck-Forscher betont zudem, dass mögliche technische Anwendungen weit über des Quantenrechnen hinausreichen: „Ein weiteres Anwendungs­beispiel ist die Quanten­kommunikation“ – die abhörsichere Übertragung von Informationen, etwa durch Licht in einem Glasfaserkabel. Dort erfährt das Licht bei seiner Ausbreitung durch optische Effekte wie Streuung und Absorption unvermeidbare Verluste – was die Distanz limitiert, über die sich ein Datentransport bewerkstelligen lässt. Durch die in Garching entwickelte Methode ließe sich Quanten­information in verschränkten Photonen verpacken und könnte auch ein gewisses Maß an Licht­verlusten überstehen – und eine sichere Kommunikation über größere Entfernungen hinweg ermöglichen.

MPQ / DE

 

Weitere Infos

ContentAd

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe
ANZEIGE

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe

Die HiPace 10 Neo ist ein effizienter, kompakter Allrounder für den Prüfalltag, der geräuscharm und besonders energieeffizient ist.

EnergyViews

EnergyViews
Dossier

EnergyViews

Die neuesten Meldungen zu Energieforschung und -technologie von pro-physik.de und Physik in unserer Zeit.

Meist gelesen

Themen