Photovoltaik wird zum Multi-Terawatt-Markt
Alle Energiesektoren werden maßgeblich durch Solarstrom versorgt werden.
Dramatische Kostensenkungen und der rasante Ausbau der Produktionskapazitäten machen die Photovoltaik zu einem Game Changer des globalen Energiesystems. Nicht nur der Stromsektor, sondern auch Verkehr, Wärme, Industrie und Chemieprozesse werden in Zukunft maßgeblich durch Solarstrom versorgt. Darin liegen Chancen, aber auch Herausforderungen – auf der Ebene des Energiesystems ebenso wie für Forschung und Industrie. Die Eckpunkte der zukünftigen Entwicklungen loteten nun führende internationale Photovoltaik-Forscher rund um die Global Alliance for Solar Energy Research Institutes aus. Die Global Alliance for Solar Energy Research Institutes GA-SERI besteht aus dem Fraunhofer-Institut für Solare Energiesysteme ISE, dem National Institute of Advanced Industrial Science and Technology AIST (Japan) und dem National Renewable Energy Laboratory NREL (USA).
Das Wachstum der PV-Branche zu einem Multi-Terawatt-Markt verlaufe schneller als erwartet, so die Experten. Während Ende 2018 500 Gigawatt Photovoltaikleistung weltweit installiert waren, wird für 2030 mit zehn Terawatt und für 2050 mit dreißig bis siebzig Terawatt gerechnet. „Die Kosten für PV- Module sind in den letzten 40 Jahren um zwei Größenordnungen gesunken, Ende 2018 lagen sie unter 25 Dollarcent pro Watt. Dadurch sanken die Stromgestehungskosten für Solarstrom – im Gegensatz zu konventionellen Energiequellen – und in weiten Teilen der Welt ist er absolut wettbewerbsfähig“, so Andreas Bett, Leiter des Fraunhofer-Instituts für Solare Energiesysteme ISE.
Der steigende Anteil von PV-Strom am Strommix zieht Änderungen im Stromerzeugungs- und Übertragungssystem, in den Betriebsführungsstrategien und bei den PV-Systemen selbst nach sich, so die Forscher. „Der fundamentale Wandel in unserem Energiesystem stellt uns vor die Herausforderung, ergänzende Technologien wie Speicher zu entwickeln und die Sektorenkopplung voranzutreiben“, so Bett weiter. Dabei identifizierten die Wissenschaftler fünf Handlungsfelder.
Die Harmonisierung von Verbrauch und Erzeugung auch über größere Entfernungen, Speicher sowie verbesserte Solarprognosen helfen, Schwankungen im Solarstromangebot auszugleichen. Mit einem wachsenden PV-Strom-Anteil im Stromnetz werden Solaranlagen zunehmend netzdienliche Leistungen wie Spannungsregulierung und Frequenzsteuerung übernehmen, wofür eine neue Generation PV-Wechselrichter entwickelt wurde. Bei einem sehr hohen PV-Anteil werden neue Technologien wie virtuelle Schwingungsregler zum Einsatz kommen, und die Kopplung mit Batteriesystemen schafft widerstandsfähige, zuverlässige Systeme.
Die Preise für Lithium-Ionen-Batterien sind in den letzten acht Jahren um achtzig Prozent gesunken, und weitere Senkungen sind durch steigende Produktionskapazitäten und Technologieentwicklung zu erwarten. Darüber hinaus arbeiten Forschung und Industrie an neuen, kostengünstigen Materialien mit einer höheren Energiedichte als Alternative zu Lithium-Ionen – Batterien. Eine weitere Möglichkeit sind Pumpspeicherkraftwerke, für die weltweit ein erhebliches technisches Potenzial besteht.
Die Elektrifizierung des Transportsektors, der für 39 Prozent des fossilen Gesamtenergieverbrauchs zuständig ist, sowie der Gebäudeheizung (17 Prozent der fossilen Energieträger) werden die Nutzung erneuerbarer Energien dramatisch erhöhen. Wärmepumpen als die führende Heizungsform der Zukunft werden die Energieeffizienz von Gebäude deutlich verbessern. Industrien wie die Stahl-, Eisen – und Düngemittelherstellung können mit kostengünstig solar erzeugtem Wasserstoff und Ammoniak die Treibhausgasemissionen ihrer Prozesse reduzieren.
Kostengünstiger Wind- und Solarstrom kann zur Erzeugung von Wasserstoff, Methan und anderen Kohlenwasserstoffverbindungen genutzt werden, die als synthetische Kraft- und Brennstoffe, Prozesschemikalien oder als Ausgangsstoffe für die chemische Industrie zum Einsatz kommen. Mit Power-to-Gas oder Power-to-X-Technologien können viele Terawatt Wind- und Solarleistung aufgenommen und über lange Zeiträume chemisch gespeichert werden. Die Forscher sehen hier noch viel Potenzial für Effizienzsteigerung und Kostensenkung.
Die Lernkurve der Photovoltaik, die in den letzten vierzig Jahren eine Senkung der Modulkosten von 23 Prozent pro Verdopplung der installierten Kapazität gezeigt hat, wird sich nach Ansicht der Wissenschaftler fortsetzen. In der Silizium-Photovoltaik, die 95 Prozent des Weltmarktes ausmacht, geht der Trend zu kostengünstigen Solarzellen mit passivierten Kontakten, die höhere Wirkungsgrade ermöglichen. Technologische Fortschritte im Bereich der Dünnschicht- und neuartigen Technologien haben hier die Wirkungsgrade über die 20-Prozent-Marke gehoben, bei Mehrfachsolarzellen auf Basis von Silicium sind es bereits über 35 Prozent. Auch die erhöhten Produktionsvolumina bedingen neue Forschungs- und Entwicklungsaufgaben: Fragen von Materialversorgung vor allem bei seltenen Elementen wie Silber, Nachhaltigkeit und Recycling rücken bei einer Produktion im Terawatt-Bereich stärker in den Mittelpunkt.
Fh.-ISE / JOL
Weitere Infos
- Originalveröffentlichung
N. M. Haegel et al.: Terawatt-scale photovoltaics: Transform global energy, Science 364, 836 (2019); DOI: 10.1126/science.aaw1845 - Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg
- National Renewable Energy Laboratory NREL, Golden, USA
- National Institute of Advanced Industrial Science and Technology AIST, Tsukuba, Japan