Planetenphysik im Labor
Vom flüssigem Wasserstoff zum Plasma.
Mit DESYs Röntgenlaser FLASH haben Forscher tief in die unteren Atmosphärenschichten großer Gasplaneten wie Jupiter oder Saturn gespäht. Die Beobachtung des Teams um Dr. Ulf Zastrau von der Universität Jena zeigt in einer Art Superzeitlupe, wie flüssiger Wasserstoff zu Plasma wird, und gibt damit Aufschluss über dessen Wärmeleitfähigkeit und inneren Energieaustausch, was für Planetenmodelle von großer Bedeutung ist. Die Wissenschaftler stellen ihre Versuche in dieser Woche im Fachblatt „Physical Review Letters“ vor.
Abb.: Gasplanet Saturn aufgenommen von der Raumsonde Cassini. (Bild: NASA)
Die Atmosphäre von Gasplaneten besteht zum großen Teil aus Wasserstoff, dem häufigsten chemischen Element im Universum. „Man weiß experimentell kaum etwas über den Wasserstoff im Inneren solcher Planeten“, sagt Zastrau. „Auch wenn die theoretischen Modelle schon sehr gut sind.“ Für ihre Untersuchungen haben die Forscher daher kalten, flüssigen Wasserstoff als eine Art Probe aus der Planetenatmosphäre benutzt. „Flüssiger Wasserstoff hat eine Dichte, wie sie den unteren Atmosphärenschichten großer Gasplaneten entspricht“, erläutert Zastrau.
Mit DESYs Röntgenlaser FLASH haben die Wissenschaftler den flüssigen Wasserstoff auf einen Schlag von minus 253 Grad Celsius auf rund 12 000 Grad Celsius erhitzt und gleichzeitig die Eigenschaften des Elements während des Erhitzens beobachtet. Durch den Röntgenlaserblitz werden zunächst nur die Elektronen erhitzt, die nach und nach ihre Energie an die etwa 2000 mal schwereren Protonen abgeben, bis sich ein thermisches Gleichgewicht einstellt. Die Molekülbindungen brechen dabei auf, es entsteht ein sogenanntes Plasma aus Elektronen und Protonen. Obwohl dazu viele tausend Stöße zwischen Elektronen und Protonen nötig sind, stellt sich das thermische Gleichgewicht bereits nach knapp einer Pikosekunde ein, wie die Untersuchungen zeigen.
„Was wir machen, ist Labor-Astrophysik“, erklärt Zastrau. Bislang stützen sich Forscher auf Rechenmodelle, wenn sie das Innere von Gasplaneten wie Jupiter beschreiben. Wichtige Parameter sind dabei die sogenannten dielektrischen Eigenschaften des Wasserstoffs, das sind unter anderem die Wärme- und die elektrische Leitfähigkeit, denn in den großen Gasplaneten findet ein starker Wärmetransport von innen nach außen statt.
„Wenn man weiß, welche thermische und elektrische Leitfähigkeit die einzelnen Wasserstoffschichten in der Atmosphäre eines Gasplaneten haben, lässt sich daraus das zugehörige Temperaturprofil berechnen.“, berichtet Ko-Autor Dr. Philipp Sperling von der Universität Rostock. Mit ihren Versuchen haben die Forscher zunächst einen Punkt im sogenannten Phasendiagramm von Wasserstoff festgelegt. Um ein detailliertes Bild der gesamten Planetenatmosphäre zu erstellen, müssen diese Versuche bei anderen Drücken und Temperaturen wiederholt werden.
Abb.: Wasserstoffstrahl in der Experimentierkammer. (Bild: Sven Toleikis/DESY)
Um Wasserstoff zu verflüssigen, muss das Gas auf -253 Grad Celsius heruntergekühlt werden. Dazu wird es durch einen mit flüssigem Helium gekühlten Kupferblock gepresst, wobei es kondensiert. Am Ende des Kupferblocks ragt eine Düse wie ein Finger in die Vakuum-Experimentierkammer. Aus ihrer Spitze fließt ein feiner Wasserstoffstrahl von nur 20 Mikrometer Durchmesser. Dieser Aufbau ist in jahrelanger Zusammenarbeit der Universität Rostock mit DESY entstanden.
Die Forscher beschossen den feinen Wasserstoffstrahl mit weicher Röntgenstrahlung aus DESYs Freie-Elektronen-Laser FLASH. „Für die Untersuchung haben wir die einzigartige Möglichkeit von FLASH benutzt, die einzelnen Blitze aufzuteilen“, erläutert DESY-Forscher Dr. Sven Toleikis. „Die erste Hälfte des Blitzes heizt den Wasserstoff auf, mit der zweiten Hälfte lassen sich dann seine Eigenschaften untersuchen.“ Mit der sogenannten Split-and-Delay-Einheit, die in Zusammenarbeit mit der Universität Münster und dem Helmholtz-Zentrum Berlin entstanden ist, wird die zweite Hälfte des Blitzes gezielt um winzige Sekundenbruchteile (bis zu 15 billionstel Sekunden) verzögert. Untersucht man das System auf diese Weise zu leicht unterschiedlichen Zeiten, lässt sich in einer Art Superzeitlupe beobachten, wie sich ein thermisches Gleichgewicht zwischen den Elektronen und den Protonen im Wasserstoff einstellt.
„Unser Experiment hat uns die Möglichkeiten gezeigt, wie sich dichte Plasmen mit Röntgenlasern untersuchen lassen“, betont Ko-Autor Dr. Thomas Tschentscher, wissenschaftlicher Direktor am Röntgenlaser European XFEL, an dem 2017 erste Experimente möglich sein werden. „Diese Methode öffnet den Weg für weitere Untersuchungen, beispielsweise an dichteren Plasmen schwererer Elemente und Gemische, wie sie im Inneren von Planeten vorkommen. Von den Ergebnissen erhoffen wir uns unter anderem eine experimentell begründete Antwort auf die Frage, warum die bisher außerhalb unseres Sonnensystems entdeckten Planeten nicht in allen denkbaren Kombinationen von Eigenschaften wie Alter, Masse, Größe oder Elementzusammensetzung auftreten, sondern bestimmten Gruppen zugeordnet werden können.“
DESY / LK