Qutrit statt Qubit
Komplexe Teleportation dreidimensionaler Quantenzustände erstmals gelungen.
Was bislang nur eine theoretische Möglichkeit war, haben Forscher der Österreichischen Akademie der Wissenschaften (ÖAW) und der Universität Wien nun erstmals experimentell durchgeführt: Gemeinsam mit Quantenphysikern der University of Science and Technology of China gelang ihnen die Teleportation komplexer hochdimensionaler Quantenzustände. Für ihre Studie teleportierten die Forscher einen Quantenzustand von einem Photon zu einem anderen. In bisherigen Experimenten wurden nur Zwei-Ebenen-Zustände („Qubits“) übertragen. Den Wissenschaftlern gelang nun aber das gleich mit einem Drei-Ebenen-Zustand („Qutrit“). Anders als in der Computertechnik ist „0“ und „1“ aber keine Frage von entweder-oder, denn laut den Gesetzen der Quantenphysik ist theoretisch auch beides gleichzeitig oder auch alles dazwischen möglich – nun eben auch mit einer dritten Möglichkeit „2“, wie das österreichisch-chinesische Team in der Praxis zeigen konnte.
Dass die mehrdimensionale Quantenteleportation theoretisch machbar ist, war zwar schon seit den 1990er Jahren bekannt. „Die tatsächliche Realisierung im Labor und die dazu benötigte Technologie mussten wir aber erst entwickeln“, berichtet Manuel Erhard vom Wiener Institut für Quantenoptik und Quanteninformation der ÖAW. Beim übertragenen Quantenzustand handelt es sich um die Information, in welcher von drei möglichen Glasfasern sich ein Photon befindet. Dabei kann sich dieses Photon auch auf allen drei Glasfasern gleichzeitig befinden. Um diese Quanteninformation oder diesen Quantenzustand zu teleportieren, verwendeten die Forscher eine neue experimentelle Anordnung.
Das Herzstück der Quantenteleportation bildet die Bell-Messung. Sie basiert einerseits auf einem Mehrfach-Strahlteiler, der Photonen durch mehrere Ein- und Ausgänge leitet und alle Glasfasern miteinander verbindet. Zusätzlich kommen nun auch Hilfsphotonen zum Einsatz, die ebenfalls in den Mehrfach-Strahlteiler gesendet werden und mit den anderen Photonen interferieren können. Durch die geschickte Auswahl bestimmter Interferenzmuster, kann nun die Quanteninformation dort, wo sich das Eingangsphoton befunden hat, auf ein anderes weit entferntes Photon übertragen werden. Und das, obwohl die Photonen zu keinem Zeitpunkt physisch miteinander in Kontakt standen. Der nun erfolgreich getestete Aufbau ist übrigens nicht auf drei Dimensionen beschränkt, sondern prinzipiell auf beliebig viele Dimensionen erweiterbar, wie Erhard betont.
Damit ist dem Forschungsteam auch ein wichtiger Schritt hin zu praktischen Anwendungen wie einem Quanteninternet gelungen, schließlich können höherdimensionale Quantensysteme deutlich größere Informationsmengen transportieren. „Dieses Ergebnis könnte hilfreich sein, mehrere Quantencomputer gleichzeitig miteinander zu verbinden, und zwar mit höheren Informationskapazitäten als mit Qubits prinzipiell möglich“, beschreibt Anton Zeilinger, Quantenphysiker an der ÖAW und der Universität Wien, das innovative Potenzial der neuen Methode.
Auch die beteiligten chinesischen Forscher sehen große Chancen in der mehrdimensionalen Quantenteleportation. „Den Grundstein für die nächste Generation von Quantenkryptographie-Systemen legt unsere heutige Grundlagenforschung“, sagt Jian-Wei Pan, der an der University of Science and Technology of China forscht. Die nächsten Forschungen der Quantenphysiker werden sich nun mit der Frage befassen, wie man die neugewonnenen Erkenntnisse erweitern kann, um den gesamten Quantenzustand eines einzelnen Photons oder Atoms zu teleportieren.
ÖAW / JOL
Weitere Infos
- Originalveröffentlichung
Y.-H. Luo et al.: Quantum Teleportation in High Dimensions, Phys. Rev. Lett. 123, 070505 (2019); DOI: 10.1103/PhysRevLett.123.070505 - Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften,
Wien