Rätselhafter Protonenradius
Frequenzkamm-Spektroskopie ermöglicht extrem genaue Bestimmung des Protonenradius.
Wissenschaftlern am Max-Planck-Institut für Quantenoptik ist es gelungen, die Quantenelektrodynamik mit bis dahin unerreichter Genauigkeit auf dreizehn Nachkommastellen zu testen. Die neue Messung des 1S-3S Übergangs im atomaren Wasserstoff ergibt einen Protonenradius fast doppelt so genau wie alle bisherigen Wasserstoffmessungen. Dieses Ergebnis bringt die Wissenschaft der Lösung des Rätsels um die Größe des Protons wieder ein Stück weit näher. Erreicht wurde diese hohe Genauigkeit durch die Frequenzkammtechnik, die hier erstmalig zur Anregung von Atomen in der hochauflösenden Spektroskopie eingesetzt wurde.
Das Experiment ist der höchste Richter jeder Theorie. Die Quantenelektrodynamik, die relativistische Version der Quantenmechanik, ist bisher zweifelsohne die erfolgreichste aller Theorien. Mit ihr lassen sich extrem präzise Berechnungen durchführen, beispielsweise die Beschreibung des Spektrums von atomarem Wasserstoff auf zwölf Nachkommastellen. Wasserstoff ist das im Universum am meisten verbreitete Element und gleichzeitig mit nur einem Elektron auch das einfachste. Dennoch birgt es ein bis dato ungelöstes Rätsel. Das Elektron im Wasserstoffatom spürt die Größe des Protons, was sich in minimalen Verschiebungen der Energieniveaus zeigt.
Seit vielen Jahrzehnten ergaben unzählige Messungen an Wasserstoff einen konsistenten Protonenradius. Spektroskopische Untersuchungen am myonischen Wasserstoff, in dem das Elektron durch seinen zweihundertmal schwereren Zwilling – das Myon – ersetzt wurde, warfen jedoch ein Rätsel auf, das die Wissenschaft seither bewegt. Die Messungen wurden im Jahr 2010 in der Zusammenarbeit mit Randolf Pohl von der Johannes-Gutenberg-Universität in Mainz durchgeführt. Der Wert für den Protonenradius, der aus diesen Experimenten abgeleitet werden kann, ist um vier Prozent kleiner als der aus dem gewöhnlichen Wasserstoff. Glaubt man allen Experimenten, so ergibt sich ein Widerspruch zur Theorie der Quantenelektrodynamik, denn die Messungen im myonischen und regulären Wasserstoff müssen denselben Protonenradius liefern, wenn die Formeln der Theorie stimmen. In der Folge motivierte dieses Protonenradius-Rätsel neue Präzisionsmessungen auf der ganzen Welt. Während jedoch neue Messungen aus Garching und Toronto den kleineren Protonenradius bestätigten, stützte eine Messung aus Paris hingegen wieder den größeren Protonenradius.
Die Wissenschaft lebt von unabhängigen Vergleichen. Deswegen wollte das Garchinger Team um Alexey Grinin, Arthur Matveev und Thomas Udem aus der Abteilung Laserspektroskopie von Theodor Hänsch denselben Übergang wie in Paris mit einer ganz anderen und damit komplementären Methode vermessen. Es gelang ihnen nun mit Hilfe der Doppler-freien Zwei-Photonen Frequenzkamm-Spektroskopie, die Genauigkeit um einen Faktor vier zu verbessern. Damit war das Ergebnis für den Protonenradius doppelt so genau wie alle bis dahin durchgeführten Messungen am Wasserstoff zusammen. Zum ersten Mal wurde damit die Quantenmechanik auf der dreizehnten Nachkommastelle überprüft. Der auf diese Weise bestimmte Wert für den Protonenradius bestätigt den kleineren Protonenradius und schließt dadurch einen Fehler in der Theorie als Ursache aus. Denn für den gleichen Übergang müssen die experimentellen Ergebnisse, unabhängig von der Theorie, übereinstimmen. Die neuen Messungen deuten an, dass das Problem um den Protonenradius von experimenteller und nicht fundamentaler Natur ist. Die Quantenelektrodynamik hätte damit ein weiteres Mal triumphiert.
Der Erfolg der hier durchgeführten Frequenzkammspektroskopie ist auch aus einem anderen Grund ein wichtiger Meilenstein der Wissenschaft. Präzisionsspektroskopische Untersuchungen am Wasserstoff und anderen Atomen und Molekülen wurden bis jetzt fast ausschließlich mit Dauerstrichlasern durchgeführt. Im Gegensatz dazu wird der Frequenzkamm von einem gepulsten Laser erzeugt. Mit solchen ist es möglich, zu wesentlich kürzeren Wellenlängen bis in den extremen ultravioletten Bereich vorzudringen. Mit Dauerstrichlasern erscheint das bislang aussichtslos. Hochinteressante Ionen, wie das wasserstoffartige Helium-Ion, haben in diesem Spektralbereich ihre Übergänge, können aber bisher auch mehr als einhundert Jahre nach der Entwicklung der ersten Quantentheorie nicht präzise, also mit Laserlicht untersucht werden. Das nun vorgestellte Experiment ist ein wesentlicher Schritt, diese unbefriedigende Situation zu ändern. Außerdem besteht die Hoffnung, mit diesen ultravioletten Frequenzkämmen biologisch und chemisch wichtige Elemente wie Wasserstoff und Kohlenstoff direkt mit Laserlicht kühlen zu können und sie damit noch präziser untersuchen zu können.
MPQ / JOL
Weitere Infos
- Originalveröffentlichung
A. Grinin et al.: Two-photon frequency comb spectroscopy of atomic hydrogen, Science 370, 1061 (2020); DOI: 10.1126/science.abc7776 - Laserspektroskopie (T. W. Hänsch), Max-Planck-Institut für Quantenoptik, Garching
Weitere Beiträge
- H. Merkel, Wie groß ist das Proton? (Physik Journal, August/September 2010, S. 22) PDF
- A. Antognini und R. Pohl, Trifft ein Myon ein Proton …
(Physik Journal, August/September 2012, S. 47) PDF