15.02.2024

Räumlicher Blick auf einzelne Atome

Magnetische Resonanztomografie nimmt 3D-Bild der Positionen einzelner Atome in einem Diamantkristall auf.

Ein Forschungsteam des Instituts für Physik der Universität Rostock und der Technischen Universität München hat einen bedeutenden Fortschritt in der Quanten­technologie erzielt. Mit Hilfe von drei­dimensionaler magnetischer Resonanz­tomografie ist es gelungen, ein dreidimensionales Bild der Positionen einzelner Atome in einem Diamantkristall aufzunehmen. Die angewandte Technik, ähnlich der Kernspin­tomografie im medi­zinischen Bereich, ermöglicht eine außerg­ewöhnliche Auflösung von knapp unter zehn Nanometern. Das ist zwar noch zehn bis einhundert Mal größer als ein einziges Atom, reicht aber aus, um die Lage einzelner Atome im Raum drei­dimensional abzubilden.

Abb.: Nano-Magnetresonanztomograf : Mikrofabrizierte Golddrähte produzieren...
Abb.: Nano-Magnetresonanztomograf : Mikrofabrizierte Golddrähte produzieren ein schaltbares magnetisches Feld, das dreidimensionale Bilder ermöglicht.
Quelle: Inst. Physik, U. Rostock

Die Magnetresonanz­spektroskopie ermöglicht die Untersuchung kleinster Proben bis hin zu einzelnen Biomolekülen. Dieser Fortschritt hat zu dem Ziel geführt, auch die Bildgebung von kleinen Nanoproben zu realisieren, um Moleküle mit atomarer Auflösung dreidimensional darzustellen und damit gewissermaßen eine verkleinerte Version eines klinischen Kernspin­tomografen zu entwickeln. Die neuesten Ergebnisse sind ein wichtiger Schritt auf diesem Weg. Durch den Aufbau eines winzigen Elektro­magneten aus nano­fabrizierten Golddrähten von wenigen Mikrometern Länge ist es gelungen, dreidimensionale Magnetfeld­gradienten zu erzeugen.

Demonstriert wurde dies durch die drei­dimensionale Abbildung einzelner Stickstoff­atome in einem Diamant­kristall mit einer Auflösung von etwa zehn Nanometern. Es ist davon auszugehen, dass diese Auflösung durch weitere Verbesserungen auf weniger als einen Nanometer verbessert werden kann, was die Möglich­keit eröffnen würde, dreidimensionale Bilder von einzelnen Molekülen zu erstellen.

Die aktuellen Experimente zeigen Atome im Diamanten selbst – Atome im Stickstoff-Fehlstellenzentrum –, einer bestimmten Art von Stickstoffeinschluss im Diamantgitter. Zukünftige Forschungen zielen darauf ab, den Diamanten zusätzlich als Sensor zu nutzen, um Moleküle außerhalb des Diamanten tomografisch abzubilden. Damit könnte die Magnetresonanz­tomografie mit den leistungs­stärksten optischen und Elektronen-Mikroskopen konkurrieren – eine bemerkens­werte Entwicklung, denn lange Zeit galt die Magnetresonanz­bildgebung als ein Verfahren, das nur für große Objekte wie den Menschen geeignet ist.

U. Rostock / JOL

Content-Ad

Park FX200 | Das fortschrittlichste AFM für 200-mm-Proben

Park FX200 | Das fortschrittlichste AFM für 200-mm-Proben

Das Park FX200 ist ideal für Forschung und Industrie zur automatisierten Messung von bis zu 200mm großen Proben und bietet bedeutende Fortschritte in der AFM-Technologie

Veranstaltung

Spektral vernetzt zur Quantum Photonics in Erfurt

Spektral vernetzt zur Quantum Photonics in Erfurt

Die neue Kongressmesse für Quanten- und Photonik-Technologien bringt vom 13. bis 14. Mai 2025 internationale Spitzenforschung, Industrieakteure und Entscheidungsträger in der Messe Erfurt zusammen

Meist gelesen

Themen