Rekordauflösung in der Röntgenmikroskopie
Räumliche Auflösung im einstelligen Nanometerbereich erreicht.
Forscher der Universität Erlangen-Nürnberg (FAU), des Schweizer Paul-Scherrer-Instituts und weiterer Einrichtungen aus Paris, Hamburg und Basel ist ein neuer Rekord in der Röntgenmikroskopie gelungen: Mit verbesserten Beugungslinsen und exakterer Positionierung der Proben erreichten sie eine räumliche Auflösung im einstelligen Nanometerbereich. Diese neue Dimension der direkten Bildgebung könnte wichtige Impulse für die Erforschung von Nanostrukturen geben und beispielsweise die Entwicklung von Solarzellen und neuartigen magnetischen Datenspeichern vorantreiben.
Die Mikroskopie mit weicher Röntgenstrahlung wird zur Untersuchung von Materialeigenschaften im Nanobereich eingesetzt. Mit der Technologie kann beispielsweise die Struktur organischer Filme bestimmt werden, die in der Solarzellen- und Batterieentwicklung eine wichtige Rolle spielen. Ebenso können chemische Prozesse oder katalytische Reaktionen von Partikeln beobachtet werden. Darüber hinaus lassen sich Spin-Dynamiken untersuchen, die für neuartige magnetische Datenspeicher genutzt werden könnten. Um diese Prozesse künftig besser erforschen zu können, ist ein Blick in den einstelligen Nanometerbereich erforderlich. Theoretisch ist das mit weicher Röntgenstrahlung möglich, praktisch konnte eine räumliche Auflösung von unter zehn Nanometern jedoch bislang nur mit indirekt bildgebenden Methoden erreicht werden. „Für dynamische Prozesse, etwa chemische Reaktionen oder magnetische Interaktionen von Partikeln, benötigen wir jedoch einen direkten Blick auf die Strukturen“, sagt Rainer Fink vom Lehrstuhl für Physikalische Chemie II der FAU. „Die Röntgenmikroskopie ist dafür besonders geeignet, weil sie deutlich flexibler in magnetischen Umgebungen genutzt werden kann als etwa die Elektronenmikroskopie.“
Nun gelang den Forscher eine Rekordauflösung von sieben Nanometern in gleich mehreren verschiedenen Experimenten. Dieser Erfolg basiert nicht primär auf leistungsstärkeren Röntgenquellen, sondern auf einer besseren Fokussierung der Strahlen durch Beugungslinsen und einer exakteren Kalibrierung der untersuchten Proben. „Wir haben die Strukturgrößen von Fresnel-Zonenplatten optimiert, mit denen die Röntgenstrahlen gebündelt werden“, erklärt Rainer Fink. „Zusätzlich konnten wir die Proben mit einer sehr viel höheren Genauigkeit im Gerät positionieren, und zwar reproduzierbar.“ Gerade die eingeschränkte Positionierung und die Stabilität des Gesamtsystems haben eine bessere Auflösung bei der direkten Bildgebung bislang verhindert.
Bemerkenswert ist, dass die Rekordauflösung nicht nur mit speziell designten Teststrukturen, sondern auch in praktischen Anwendungen erreicht wurde: Mit ihren neuen Optiken haben die Wissenschaftler beispielsweise die magnetische Orientierung von Eisenpartikeln in Größen von fünf bis zwanzig Nanometern untersucht. Fink: „Wir gehen davon aus, dass unsere Ergebnisse die Erforschung insbesondere von Energiematerialien und Nanomagnetismus voranbringen wird. In diesen Bereichen liegen die relevanten Strukturgrößen häufig unterhalb des bisherigen Auflösungslimits.“
FAU / JOL