Relativistische Elektronen im Strahlungsgürtel
Plasmawellen spielen eine große Rolle für die starke Beschleunigung.
Elektronen können in den Van-Allen-Strahlungsgürteln um unseren Planeten ultrarelativistische Energien erreichen und damit nahezu Lichtgeschwindigkeit. Hayley Allison, Yuri Shprits und Kollegen vom Deutschen Geoforschungszentrum in Potsdam haben herausgefunden, unter welchen Voraussetzungen es zu solch starken Beschleunigungen kommt. Bereits 2020 hatten sie nachgewiesen, dass Plasmawellen, die bei Sonnenstürmen auftreten, eine entscheidende Rolle spielen. Allerdings war bislang offen, warum derart hohe Elektronenenergien nicht bei allen Sonnenstürmen erreicht werden. Nun zeigen die Forscher, dass hierfür die Dichte des Hintergrundplasmas extrem gering sein muss.
Nahe der Lichtgeschwindigkeit wächst die Masse der Elektronen um einen Faktor zehn, für sie vergeht die Zeit langsamer und Entfernungen werden kürzer. Mit derart hohen Energien werden die geladenen Teilchen zur Gefahr für Satelliten: Weil sie nicht abschirmbar sind, können sie aufgrund ihrer Ladung die empfindliche Elektronik zerstören. Ihr Auftreten vorherzusagen, ist daher für eine moderne Infrastruktur sehr wichtig. Um die Bedingungen für die enormen Beschleunigungen der Elektronen zu untersuchen, nutzten Allison und Shprits Daten einer Zwillingsmission, die „Van Allen Probes“, welche die US-amerikanische Raumfahrtagentur Nasa 2012 startete. Ziel waren detaillierte Messungen im Strahlungsgürtel, dem Van-Allen-Gürtel, der die Erde im erdnahmen Weltraum donut-förmig umgibt. Hier – wie im übrigen Weltraum – bildet ein Gemisch aus positiv und negativ geladenen Teilchen ein Plasma. Plasmawellen können als Fluktuation des elektrischen und magnetischen Feldes verstanden werden, angeregt von Sonnenstürmen. Sie sind eine wichtige Triebkraft für die Beschleunigung der Elektronen.
Im Rahmen der Mission wurden sowohl Sonnenstürme beobachtet, die ultrarelativistische Elektronen hervorriefen, als auch Stürme ohne diesen Effekt. Als entscheidender Faktor für die starke Beschleunigung stellte sich die Dichte des Hintergrundplasmas heraus: Elektronen mit ultrarelativistischen Energien wurden nur dann vermehrt beobachtet, wenn die Plasmadichte auf sehr niedrige Werte von nur etwa zehn Teilchen pro Kubikzentimeter abfiel. Mit einem numerischen Modell, das eine solche extreme Plasmaverarmung auf ein Fünftel bis ein Zehntel ihres durchschnittlichen Wertes einbezog, zeigten die Forscher, dass Perioden niedriger Dichte bevorzugte Bedingungen für die Beschleunigung von Elektronen schaffen – von ursprünglich einigen Hunderttausend auf mehr als sieben Millionen Elektronenvolt. Für die Analyse der Daten der Van-Allen-Sonden verwendeten die Forscher Methoden des maschinellen Lernens, deren Entwicklung vom Netzwerk GEO.X finanziert wurde. Sie ermöglichten es, aus den gemessenen Fluktuationen des elektrischen und magnetischen Feldes auf die Gesamtplasmadichte zu schließen.
„Diese Studie zeigt, dass Elektronen im Strahlungsgürtel der Erde lokal sehr schnell auf ultrarelativistische Energien beschleunigt werden können, wenn die Bedingungen der Plasmaumgebung – Plasmawellen und temporär geringe Plasmadichte – stimmen. Die Teilchen surfen quasi auf Plasmawellen und können ihnen in Regionen sehr geringer Plasmadichte die benötigte Energie entziehen. Einen ähnlichen Beschleunigungs-Mechanismus für geladene Teilchen könnte es auch in den Magnetosphären der äußeren Planeten, etwa Jupiter oder Saturn, und in anderen astrophysikalischen Objekten geben“, sagt Yuri Shprits, Leiter der Sektion Weltraumphysik und Weltraumwetter. „Es braucht also zum Erreichen solch extremer Energien nicht, wie lange angenommen, einen zweistufigen Beschleunigungsprozess – zunächst aus dem äußeren Bereich der Magnetosphäre in den Gürtel hinein und dann innerhalb. Damit werden auch unsere Untersuchungsergebnisse aus dem vergangenen Jahr untermauert“, sagt Postdoc Hayley Allison.
GFZ / JOL
Weitere Infos
- Originalveröffentlichung
H. J. Allison et al.: Gyroresonant wave-particle interactions with chorus waves during extreme depletions of plasma density in the Van Allen radiation belts, Sci. Adv. 7, eabc0380 (2021); DOI: 10.1126/sciadv.abc0380 - Sektion Weltraumphysik und Weltraumwetter, Deutsches GeoForschungsZentrum GFZ, Potsdam