20.10.2015

Schneller Speicher mit Langzeit-Gedächtnis

Speicherschicht für Sauerstoffionen erhöht Memristor-Speicherdauer.

Sie sind um ein Vielfaches schneller als FLASH-Speicher und benötigen deutlich weniger Energie: ReRAM-Speicher könnten die Computertechnik in den nächsten Jahren revolutionieren. Doch für viele Anwendungen sind die memristiven Speicherzellen noch zu fehleranfällig. Ein Jülicher und Aachener Forscherteam konnte nun aufdecken, wie sich Speicherzellen, die schnell Daten verlieren, mikroskopisch von jenen unterscheiden, die über lange Zeit stabil sind. Zugleich stießen sie auf eine Lösung für fehlerresistente Speicherzellen: eine Speicherschicht für Sauerstoff-Ionen, die den unerwünschten Vorgang verlangsamt und womöglich ganz unterdrückt.

Abb.: Blick in das memristive SrTiO3 Bauelement: Spektromikroskopische Identifizierung des schaltenden Filamentes und der SrO-Lage, die die Rückdiffusion von Sauerstoff verhindert. (Bild: FZ Jülich)

Memristive Speicherbauelemente gelten als Hoffnungsträger für die Computer der Zukunft. Darüber hinaus sind sie wie geschaffen für die Verschaltung zu sogenannten neuromorphen Systemen, die Daten mit Methoden verarbeiten, die dem Gehirn nachempfunden sind. Entsprechende Speicherbausteine gelten als äußerst schnell, energiesparend und lassen sich sehr gut bis in den Nanometerbereich miniaturisieren. Zudem handelt es sich – anders als beim aktuell gängigen DRAM-Arbeitsspeicher – um einen nichtflüchtigen Speichertyp. Die Daten bleiben auch dann noch erhalten, wenn der Strom abgeschaltet wird, was die Zeit für das Hochfahren des Rechners auf wenige Sekunden verkürzen könnte.

Noch ist die Technologie allerdings nicht ausgereift genug, um die gängigen Speichertypen zu verdrängen. „In Laborexperimenten konnte man schon zeigen, dass die eingeschriebene Information in einem memristiven Speicherbauelement prinzipiell zehn Jahre lang erhalten bleibt, ohne dass sie neu aufgefrischt werden müsste. Es gibt aber immer einzelne Speicherzellen, die ihre Daten schon viel früher verlieren. Warum, war lange nicht klar“, erklärt Regina Dittmann vom Jülicher Peter Grünberg Institut.

In der Vergangenheit hatten die Forscher unter der Leitung von Rainer Waser bereits maßgeblich dazu beigetragen, die mikroskopischen Mechanismen des Schaltverhaltens aufzuklären. Nun konnten sie im Rahmen des Sonderforschungsbereichs 917 auch die Vorgänge klären, die für den vorzeitigen Datenverlust verantwortlich sind. „Entscheidend ist hierfür die Bewegung von Sauerstoff-Ionen, die auch für den Schaltprozess unerlässlich ist“, erläutert Dittmann.

Die Funktionsweise memristiver Zellen beruht auf einem ganz besonderen Effekt: Ihr elektrischer Widerstand ist nicht konstant, wie es die Regel ist. Vielmehr lässt er sich durch das Anlegen einer äußeren Spannung verändern und wieder zurücksetzen. So stellt beispielsweise ein niedriger Widerstandszustand die logische „1“ und ein hoher Widerstandszustand die logische „0“ dar. Die Änderung des elektrischen Widerstands wird dabei durch die Wanderung von Sauerstoff-Ionen herbeigeführt. Bewegen sich die Ionen aus der sauerstoffhaltigen Metalloxidschicht heraus, so wird das Material schlagartig leitfähig – der elektrische Widerstand sinkt. Doch im Laufe der Zeit kann es passieren, dass die Sauerstoff-Ionen wieder von alleine zurückwandern und die gespeicherte Information verlorengeht.

„Obwohl sich erste memristive Speicher bereits seit etwa zwei Jahren auf dem Markt befinden, wurden diese Speicherbauelemente bisher weitgehend mithilfe rein empirischer Methoden optimiert“, erläutert Dittmann. Die Schaltprozesse laufen innerhalb winziger Filamente ab. Um sie zu erforschen, hat sie die Reaktionen im Jülicher Electronic Oxide Cluster Labor und am italienischen Elektronen-Synchrotron Elettra in Triest in enger Kooperation mit der Arbeitsgruppe von Claus Michael Schneider am Jülicher Peter Grünberg Institut (PGI-6) mit Nanometer-Präzision sichtbar gemacht. Dabei stießen die Wissenschaftler zugleich auf eine Lösung des Problems. „Wir haben festgestellt, dass sich bei allen zeitstabilen Strontiumtitanat-Zellen eine Strontiumoxid-Schicht an der Oberfläche der Elektrode abgelagert hatte. Dies brachte uns auf die Idee, dass die Strontiumoxid-Schicht Sauerstoff-Ionen nur sehr langsam transportiert – und somit die Zeitstabilität der Zelle verbessert“, erläutert Dittmann.

Berechnungen in der Gruppe von Roger De Souza vom Institut für Physikalische Chemie an der RWTH Aachen bestätigten die Vermutung. Daraufhin konnte das Team Materialien auswählen, die ähnliche Merkmale aufweisen, sich aber besser gezielt auf die Elektrodenoberfläche aufbringen lassen. Als eine Art Speicherschicht für Sauerstoff verhindern sie die Rückdiffusion. Damit konnten die Forscher erstmals eine Designregel für ReRAM Zellen aus dem mikroskopischen Verständnis des Sauerstofftransports innerhalb der Zellen ableiten. Merkliche Auswirkungen auf die Schaltgeschwindigkeit sind nicht zu erwarten, da sich der Sauerstofftransport mit steigender Spannung und Temperatur während des Schaltvorgangs schlagartig erhöht.

FZ Jülich / DE

ContentAd

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe

Die HiPace 10 Neo ist ein effizienter, kompakter Allrounder für den Prüfalltag, der geräuscharm und besonders energieeffizient ist.

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

Meist gelesen

Themen