Schwarzes Loch in der Mitte der Milchstraße
Beobachtung mit dem Event Horizon Telescope verbessert das Verständnis der Vorgänge im galaktischen Zentrum.
Es sitzt tief im Herzen der Milchstraße, ist 27.000 Lichtjahre von der Erde entfernt und ähnelt einem Donut: So präsentiert sich das schwarze Loch im Zentrum unserer Galaxis auf dem Bild, das Forschende mit dem Event Horizon Telescope (EHT) gewonnen haben. Dabei liefert das Team den Beweis, dass dieses Objekt wie vermutet zur Familie der kosmischen Schwerkraftfalle gehört. Die Radiodaten der im weltweiten EHT-Netz verbundenen Observatorien wurden an zwei Supercomputern am Max-Planck-Institut für Radioastronomie in Bonn und am Haystack Observatory im US-amerikanischen Massachusetts gewonnen. Beteiligt an der Beobachtung waren auch das Apex-Teleskop des Bonner Instituts sowie die Dreißig-Meter-Antenne des Institut de Radioastronomie Millimétrique (IRAM).
Das jetzt veröffentlichte Bild ist der lang erwartete direkte Blick auf das Objekt im Zentrum unserer Galaxis, das unter dem Namen Sagittarius A* bekannt ist. Schon seit vielen Jahren nehmen Forschende diesen Bereich der Milchstraße unter die Lupe und beobachten beispielsweise Sterne, die um ein unsichtbares, kompaktes und sehr massereiches Etwas kreisen. Für diese Arbeiten wurden Andrea Ghez von der University of California sowie Reinhard Genzel vom Garchinger Max-Planck-Institut für extraterrestrische Physik im Jahr 2020 mit dem Nobelpreis ausgezeichnet. „Unsere Entdeckung zeigt, dass es sich bei dem Objekt im galaktischen Zentrum tatsächlich um ein schwarzes Loch handelt“, sagt Anton Zensus, Direktor am Max-Planck-Institut für Radioastronomie und Gründungsvorsitzender des EHT-Aufsichtsrats.
Das Bild liefere den ersten direkten visuellen Beweis dafür. Das schwarze Loch selbst ist auf der Aufnahme zwar nicht zu sehen, weil es naturgemäß keine Strahlung aussendet. Doch zeigt das glühende Gas darum herum eine verräterische Signatur – eine dunkle zentrale Region („Schatten“), die von einer hellen ringartigen Struktur umgeben ist. Deren Licht wird durch die immense Gravitation des schwarzen Lochs gleichsam gebeugt. „Wir waren verblüfft, wie gut die Größe des beobachteten Rings mit den Vorhersagen von Einsteins Allgemeiner Relativitätstheorie übereinstimmt“, sagt EHT-Projektwissenschaftler Geoffrey Bower vom Institut für Astronomie und Astrophysik der Academia Sinica in Taipeh. Die Beobachtungen hätten das Verständnis der physikalischen Prozesse in den Zentren von Galaxien erheblich verbessert und würden Erkenntnisse darüber liefern, wie solche riesige Schwerkraftfallen mit ihrer Umgebung wechselwirken.
Da das schwarze Loch im Zentrum der Milchstraße 27.000 Lichtjahre von der Erde entfernt ist, erscheint es uns am Himmel etwa so groß wie ein Donut auf dem Mond. Um es abzubilden, schuf das Team das leistungsstarke EHT, das erst acht, heute elf Radioobservatorien auf der ganzen Welt zu einem einzigen virtuellen Teleskop von Erdgröße verbindet. Mit der Interferometrie-Methode beobachteten die Astronominnen und Astronomen während mehrerer Nächte im April 2017 das Objekt Sagittarius A*. Bei einer Wellenlänge von 1,3 Millimeter sammelten sie über viele Stunden am Stück Daten, ähnlich wie bei der langen Belichtungszeit einer Kamera. Ausgewertet wurden diese Daten von zwei Korrelatoren – Hochleistungsrechner, die am Max-Planck-Institut für Radioastronomie und am Haystack Observatory stehen.
Neben anderen Einrichtungen umfasst das EHT-Netzwerk von Radioobservatorien das Atacama Large Millimeter/submillimeter Array (ALMA) und das Atacama Pathfinder EXperiment (APEX) in der Atacama-Wüste in Chile, die von der ESO im Namen ihrer europäischen Mitgliedsstaaten mitbetreut werden. Europa trägt auch mit anderen Radioobservatorien zu den EHT-Beobachtungen bei – dem Dreißig-Meter-Teleskop IRAM in Spanien und, seit 2018, dem Northern Extended Millimeter Array (NOEMA) in Frankreich. „Der Beitrag unseres Apex-Teleskops war essenziell, um eine perfekte Kalibrierung der sich verändernden Helligkeit der Quelle zu erreichen und den endgültigen Beweis für den Schatten des schwarzen Lochs im galaktischen Zentrum zu erbringen“, sagt Apex-Direktor Karl Menten.
Die aktuelle Beobachtung folgt auf die bereits im Jahr 2019 veröffentlichte erste Aufnahme eines schwarzen Lochs (M 87*) im Zentrum der Galaxie Messier 87, die in wesentlich größerer Entfernung zur Erde liegt. Die beiden Objekte gleichen sich, obwohl das schwarze Loch im Zentrum unserer Milchstraße mehr als tausendmal kleiner und viel leichter ist als M 87*. „Wir haben es mit zwei völlig unterschiedlichen Arten von Galaxien und zwei sehr unterschiedliche Massen von schwarzen Löchern zu tun, aber in der Nähe ihrer Ränder sehen sie sich verblüffend ähnlich“, sagt Sera Markoff, Ko-Vorsitzende des EHT-Wissenschaftsrats von der Universität von Amsterdam.
Dieses Mal war die Auswertung der Daten wesentlich schwieriger als bei der 55 Millionen Lichtjahre entfernten Galaxie M 87, obwohl uns das Milchstraßenzentrum mit 27.000 Lichtjahren viel näher liegt. Zwar strudelt das Gas praktisch mit derselben Geschwindigkeit um die beiden schwarzen Löcher – fast so schnell wie das Licht. Doch während es Tage bis Wochen braucht, um das größere Objekt M 87* zu umkreisen, vollendet es bei dem viel kleineren Sagittarius A* seine Umlaufbahn in nur wenigen Minuten. „Daher änderten sich Helligkeit und Erscheinungsbild des Gases um Sagittarius A* während unserer Beobachtung sehr rasch“, sagt Chi-kwan Chan von der University of Arizona. „Das ist so, als würde man versuchen, ein scharfes Bild von einem Hund aufzunehmen, der unentwegt mit dem Schwanz wedelt.“
Die Forschenden mussten ausgeklügelte neue Methoden entwickeln, um die Gasbewegungen um das schwarze Loch Sagittarius A* erklären zu können, das rund vier Millionen Sonnenmassen „wiegt“. Dagegen war M 87* mit seinen sechseinhalb Milliarden Sonnenmassen ein einfacheres, stabileres Ziel gewesen. Zudem befinden wir uns mit der Erde in der galaktischen Ebene, was einen Streueffekt in den Radiomessungen verursacht. Zusätzlich erschwert heißes Gas mit geladenen Teilchen und Magnetfeldern in der Sichtlinie die Analyse. So ist das Bild von Sagittarius A* ein Mittelwert von verschiedenen Bildern, die das Team aus den Daten extrahiert hat. Maßgeblich an der Kalibrierung beteiligt waren Maciek Wielgus sowie Michael Janßen, beide vom Max-Planck-Institut für Radioastronomie. Für Tests der Allgemeinen Relativitätstheorie und den Nachweis eines Ereignishorizonts trug ihr Institutskollege Gunther Witzel die Ergebnisse anderer Beobachtungen zusammen.
Der EHT-Kollaboration gehören weltweit mehr als 300 Forschende aus achtzig Instituten an. In den vergangenen fünf Jahren hat das Team unter anderem komplexe Instrumente entwickelt und eine einzigartige Bibliothek von numerisch simulierten schwarzen Löchern zum Vergleich mit den Beobachtungen zusammengestellt. Diese dienen unter anderem dazu, die Theorien der Gravitation zu überprüfen. Nach den Worten von Michael Kramer, Direktor am Max-Planck-Institut und einem der Projektleiter des Black Hole Cam-Projekts, war das frühere Bild von M 87* dafür nur bedingt geeignet. „Bei Messier 87 hatten wir keine verlässlichen Vorkenntnisse über die Masse des schwarzen Lochs. Im aktuellen Fall ist das ganz anders. Dank vorhergehender Messungen wie denen von Reinhard Genzel kennen wir sowohl die Entfernung als auch die Masse von Sagittarius A* sehr genau, sodass wir die erwartete Schattengröße berechnen konnten, um sie mit den Beobachtungen zu vergleichen. Und sie passt sehr gut!“
Anhand der Bilder von nunmehr zwei schwarzen Löchern unterschiedlicher Größe können die Forschenden die beiden Objekte miteinander vergleichen und prüfen, wodurch sie sich unterscheiden. Zudem lassen sich mit den neuen Daten etwa Theorien und Modelle darüber testen, wie sich Schwerkraft und Materie in der extremen Umgebung von supermassereichen schwarzen Löchern verhalten. Dies ist noch nicht vollständig geklärt, spielt aber offenbar eine Schlüsselrolle bei der Entstehung und Entwicklung von Galaxien. „Die Ergebnisse des Event Horizon Telescope sind eine ideale Ergänzung der Resultate, die von der Gruppe um Reinhard Genzel am Max-Planck-Institut für extraterrestrische Physik im Infrarotbereich mit dem Instrument Gravity erzielt wurden“, sagt IRAM-Direktor Karl Schuster. Unterdessen gehen die Messungen mit dem Event Horizon Telescope weiter: An einer großen Kampagne im März 2022 waren elf Observatorien beteiligt. „Jetzt sind wir natürlich alle sehr gespannt, was die EHT-Beobachtungen in den Jahren 2021 und 2022 unter Mitwirkung unseres leistungsstarken Noema-Observatoriums ergeben werden“, sagt Schuster.
MPG / ESO / JOL
Weitere Infos
- Originalveröffentlichung
EHT Collaboration: Focus on First Sgr A* Results from the Event Horizon Telescope, Astrophys. J. Lett. 930, L12 - L21 (2022) - Event Horizon Telescope EHT
- Event Horizon Telescope, European Southern Observatory ESO, Paranal & Garching
Weitere Beiträge
Meist gelesen
Auf dem Weg zur präzisesten Karte des Universums
Beobachtungen des Euclid-Teleskops zeigen die Entdeckung neu entstandener Planeten.
Mit Spin-Glas und Stochastik zum Maschinellen Lernen
John Hopfield und Geoffrey Hinton erhalten den Physik-Nobelpreis für ihre bahnbrechende Entdeckungen und Erfindungen, die maschinelles Lernen mit künstlichen neuronalen Netzen ermöglichen.
Elemententstehung: Woher stammen die p-Kerne?
Wenn neutronenreiches Material intensiver Neutrinostrahlung ausgesetzt ist, könnten seltene Isotope entstehen.
Monopole des orbitalen Drehimpulses
Entdeckung ebnet den Weg für neue Elektronik mit chiralen Materialien.
Megatsunami in schmalem Fjord
Bergsturz löste offenbar eine bis zu 200 Meter hohe Flutwelle aus.