24.04.2024

Schwerstes stellares schwarzes Loch der Milchstraße

Beobachtungen mit dem Very Large Telescope belegen schwarzes Loch mit 33-facher Sonnenmasse.

Astronomen haben das massereichste stellare schwarze Loch identifiziert, das bisher in der Milchstraßengalaxie entdeckt wurde. Entdeckt wurde das schwarze Loch in den Daten der Gaia-Mission der Europäischen Weltraumorganisation, weil es den Begleitstern, der es umkreist, in eine merkwürdige Taumelbewegung versetzt. Um die genaue Masse des schwarzen Lochs zu bestimmen, wurden Daten des Very Large Telescope (VLT) der Europäischen Südsternwarte (ESO) und anderer bodengestützter Observatorien herangezogen. Sie beziffern die Masse des schwarzen Lochs auf das 33-fache der Sonne.


Abb.: Künstlerische Darstellung des Systems mit dem massereichsten stellaren...
Abb.: Künstlerische Darstellung des Systems mit dem massereichsten stellaren schwarzen Loch in unserer Galaxie
Quelle: ESO / L. Calçada

Stellare schwarze Löcher entstehen durch den Kollaps massereicher Sterne. Die bisher in der Milchstraße nachgewiesenen schwarzen Löcher haben im Durchschnitt etwa die zehnfache Masse der Sonne. Selbst das nächstmassereiche stellare schwarze Loch in unserer Galaxie, Cygnus X-1, erreicht nur 21 Sonnenmassen, was diese neue Beobachtung mit 33 Sonnenmassen außergewöhnlich macht.

Außerdem ist dieses schwarze Loch extrem nah an uns dran – mit einer Entfernung von nur 2000 Lichtjahren im Sternbild Aquila ist es das schwarze Loch, das der Erde am zweitnächsten ist. Es wurde als Gaia BH3 oder kurz BH3 bezeichnet und entdeckt, als das Team die Gaia-Beobachtungen zur Vorbereitung einer bevorstehenden Datenfreigabe überprüfte. „Niemand hat damit gerechnet, ein massereiches schwarzes Loch zu finden, das in der Nähe lauert und bisher unentdeckt geblieben ist“, sagt Pasquale Panuzzo, Astronom am Observatoire de Paris, das zum französischen Nationalen Zentrum für wissenschaftliche Forschung (CNRS) gehört. „Diese Art von Entdeckung macht man nur einmal in seinem Forscherleben.“

Zur Bestätigung ihrer Entdeckung nutzte die Gaia-Kollaboration Daten von bodengestützten Observatorien, unter anderem vom Ultraviolet and Visual Echelle Spectrograph (UVES)-Instrument am VLT der ESO in der chilenischen Atacama-Wüste. Diese Beobachtungen ergaben wichtige Eigenschaften des Begleitsterns, die es den Astronomen in Verbindung mit den Gaia-Daten ermöglichten, die Masse von BH3 genau zu bestimmen.

Bislang wurden ähnlich massereiche schwarze Löcher außerhalb unserer Galaxie gefunden, mit einer anderen Nachweismethode. Die Forscher vermuten, dass sie aus dem Kollaps von Sternen entstehen, die in ihrer chemischen Zusammensetzung nur wenige Elemente enthalten, die schwerer sind als Wasserstoff und Helium. Es wird angenommen, dass diese metallarmen Sterne im Laufe ihres Lebens weniger Masse verlieren und daher mehr Material übrig bleibt, aus dem nach ihrem Tod massereiche schwarze Löcher entstehen. Bisher gab es jedoch keine direkten Beweise für den Zusammenhang zwischen metallarmen Sternen und massereichen schwarzen Löchern.

Sterne in Paaren neigen allerdings dazu, eine ähnliche Zusammensetzung zu haben, was bedeutet, dass der Begleiter von BH3 wichtige Hinweise auf den Stern enthält, der kollabierte, um dieses außergewöhnliche schwarze Loch zu bilden. Die UVES-Daten zeigten, dass der Begleiter ein sehr metallarmer Stern war, was darauf hindeutet, dass der Stern, der zur Bildung von BH3 kollabierte, ebenfalls metallarm war – genau wie vorhergesagt.

Die von Panuzzo geleitete Untersuchung wurde nun in Astronomy & Astrophysics veröffentlicht. „In Anbetracht der Einzigartigkeit der Entdeckung haben wir den außergewöhnlichen Schritt unternommen, diese auf vorläufigen Daten basierende Arbeit vor der bevorstehenden Ausgabe der Gaia-Daten zu veröffentlichen“, sagt Mitautorin Elisabetta Caffau, ebenfalls Mitglied der Gaia-Kollaboration am CNRS Observatoire de Paris. Die frühzeitige Bereitstellung der Daten ermöglicht es anderen Astronomen, dieses schwarze Loch bereits jetzt zu untersuchen, ohne auf die Veröffentlichung der vollständigen Daten zu warten, die frühestens Ende 2025 erfolgen soll.

Weitere Beobachtungen dieses Systems könnten mehr über seine Geschichte und über das schwarze Loch selbst verraten. Das Gravity-Instrument am VLT-Interferometer der ESO könnte zum Beispiel dabei helfen, herauszufinden, ob dieses schwarze Loch Materie aus seiner Umgebung anzieht, und dieses spannende Objekt besser zu verstehen.

MPIA / DE

ContentAd

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe
ANZEIGE

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe

Die HiPace 10 Neo ist ein effizienter, kompakter Allrounder für den Prüfalltag, der geräuscharm und besonders energieeffizient ist.

Virtuelle Jobbörse

Virtuelle Jobbörse
Eine Kooperation von Wiley-VCH und der DPG

Virtuelle Jobbörse

Innovative Unternehmen präsentieren hier Karriere- und Beschäftigungsmöglichkeiten in ihren Berufsfeldern.

Die Teilnahme ist kostenfrei – erforderlich ist lediglich eine kurze Vorab-Registrierung.

Meist gelesen

Themen