Schwingungsmoden in Membranblasen
Thermische Bewegungen eines Bakteriums beeinflussen Schwingungen einer Zellmembran.
Wie und mit welchen Aufwand gelangt ein Bakterium — oder ein Virus — in eine Zelle und verursacht eine Infektion? Zur Beantwortung dieser Frage haben Freiburger Forschende nun einen wichtigen Beitrag geleistet: Ein Team um den Physiker Alexander Rohrbach und seine Kollegin Yareni Ayala konnte zeigen, wie thermische Bewegungen eines Modellbakteriums und Membran-Schwingungsmoden einer Modellzelle beeinflussen, mit welcher Energie die Modellbakterien andocken und in die Membran eindringen.
„Um zu verstehen, wie ein Bakterium oder Virus in eine Zelle eindringt, kann man sich ein klebriges Bonbon auf einem schlaffen, wabbeligen Luftballon vorstellen. Wenn ein Kind den Gummi-Luftballon herum schüttelt, verklebt sich das Bonbon noch mehr in seiner Oberfläche“, sagt Rohrbach vom Institut für Mikrosystemtechnik der Universität Freiburg. In seinem Labor bauten die Laser- und Biophysiker ein vergleichbares Experiment auf, um die Physik von Infektionsvorgängen zu studieren. Der wabbelige Luftballon entspricht hierbei einem Riesen-Membranvesikel, das als eine biologische Modellzelle dient. Die Membranblase hat etwa einen Durchmesser von zwanzig Mikrometern. Das klebrige Bonbon entspricht hier einem ein Mikrometer kleinen, runden Partikel, das als Modell-Bakterium dient und in Kontakt mit der Membran gebracht wird. Dabei hilft den Forschenden eine Laser-Pinzette, mit der man das Partikel über Lichtkräfte nicht nur einfängt und festhält, sondern kontrolliert in kleinen Schritten der Membran nähert, diese kontaktiert und sogar deformiert, bis das Partikel in die Membranblase hineinschlüpft.
Per optischer Pinzette und Laserlichtstreuung lassen sich nicht nur die notwendigen Kräfte und Energien messen, sondern auch die thermischen Bewegungen des Partikels, die für seine Aufnahme notwendig sind Diese wiederum entsprechen im obigen Beispiel dem Schütteln des Luftballons. Die Membranblase und das Partikel befinden sich während des Experiments in wässriger Lösung bei Raumtemperatur. Die Wassermoleküle schießen in der Flüssigkeit in alle Richtungen, stoßen an das Partikel und lassen es eine charakteristische Zitterbewegung durchführen, die man Brownsche Molekularbewegung oder auch thermische Fluktuationen nennt.
Zur gleichen Zeit regen die hochdynamischen Wassermoleküle die Membranblase zu Schwingungen mit verschiedenen Amplituden und Wellenlängen an, welche völlig unabhängig voneinander entstehen und wieder gedämpft werden. „Wir gehen davon aus“, so Rohrbach, „dass auch Plasmamembranen von lebenden Zellen in unserem Körper ähnliche überdämpfte Schwingungen durchführen und mit den sich thermisch bewegenden Bakterien wechselwirken, was unter Umständen dann zu einer Partikelaufnahme und Infektion der Zelle führt“.
Wie stark sich ein Bonbon in einen wabbligen Luftballon einwickelt, hängt von der Klebrigkeit des Bonbons ab und vom Zustand des Ballongummis. Vergleichbar hat eine Zellmembran zahlreiche Rezeptoren, die spezifisch an Liganden beispielsweise von herannahenden Bakterien binden. Hier konnten die Freiburger Physiker in Zusammenarbeit mit der Arbeitsgruppe von Winfried Römer sowohl die Membranen der Modellzelle verändern, als auch die Beschichtung der Modellbakterien variieren, um den Einfluss der thermischen Fluktuationen bei verschiedenen Adhäsionskräften zu studieren.
„Am Anfang waren wir etwas enttäuscht“, gibt Rohrbach zu, „da die Fluktuationsdaten des Partikels in der Laserfalle sich für verschiedene Abstände zur Membran oder bei verschiedenen Membranen kaum sichtbar unterschieden haben.“ Und das, obwohl die Forschenden Signale in Mikrosekundentakt aufgenommen haben und damit kleinste Bewegungsänderungen des Partikels aufzeichnen konnten. Erst als sie die Daten anders analysierten, stellten sich plötzlich signifikante Unterschiede in den Bewegungsmustern heraus, die mithilfe von mathematischen Methoden und Computersimulationen analysiert wurden.
In den mathematischen Modellen spielt die Überlagerung von vielen Schwingungsmoden eine entscheidende Rolle. Erhöht man die Spannung der Membranblase durch mehr Innendruck oder eine andere chemische Komposition der Membranmoleküle, so schwingt die Blase im Mittel in höheren Moden. Kommt nun das Bakterium in Kontakt mit der Membranblase, so werden zunehmend Grundschwingungen unterdrückt und nur Moden mit höherer Frequenz überleben. Da nun jeder Schwingungsmode der Membranblase eine eigene Dämpfung oder Reibung hat, lässt sich hieraus über Computersimulationen die summierte Dämpfung und Amplitude aller überlebenden Moden abschätzen.
Sowohl die Messungen als auch die Computersimulationen zeigten, dass die notwendige Energie zur Membranverformung durch das Partikel bis zu seiner kompletten Aufnahme ins Innere der Membranblase stark mit der Steifigkeit und vor allem der Dämpfung der Membranbewegungen skaliert. Durch diese mathematischen Modelle und die Bewegungsmessungen mit einer Million Partikelpositionen pro Sekunde lässt sich beispielsweise bestätigen, warum Bakterien mit bestimmten Proteinen auf ihrer Oberfläche leichter an Zellen mit bestimmten Membranrezeptoren binden. Vor allem kann man damit aber erklären, inwiefern durch eine stärker fluktuierende und weniger gedämpfte Membran die Energiekosten sinken und damit die Wahrscheinlichkeit steigt, dass das Bakterium aufgenommen wird, was einem erhöhten Infektionsrisiko der Zelle entspricht.
U. Freiburg / JOL