Spin-Kontrolle in Graphen
Detaillierte Analyse der starken Spin-Bahn-Wechselwirkung mit Gold-Clustern.
Graphen besitzt verblüffende Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Physiker vom Helmholtz-Zentrum Berlin HZB haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Nun konnten sie zeigen, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.
Abb.: Diese Aufnahme eines Rastertunnelmikroskops zeigt, wie sich Graphen über den Goldclustern wölbt und ein regelmäßiges Muster bildet.(Bild: HZB)
Im Graphen können die Spins der Leitungselektronen überraschenderweise sehr gut kontrolliert werden. Denn bringt man eine Lage Graphen auf ein Nickelsubstrat auf und schiebt Goldatome dazwischen, dann erhöht sich die Spin-Bahn-Wechselwirkung dramatisch um den Faktor 10.000, sodass sich die Ausrichtung der Spins durch äußere Felder beeinflussen lässt. Dass dies funktioniert hatten die Physiker um Andrei Varykhalov am HZB bereits mehrfach demonstriert. Allerdings war nicht klar, warum die Präsenz der Goldatome sich derartig stark auf das Verhalten der Spinaufspaltung im Graphen auswirkt.
„Wir wollten daher herausfinden, wie es dazu kommt, dass die hohe Spin-Bahn-Wechselwirkung, die für Gold charakteristisch ist, sich auf das Graphen überträgt“, sagt Varykhalov. Nun zeigen die Physiker, dass sich die Goldatome in der Zwischenschicht nicht ganz gleichmäßig, sondern in kleinen Grüppchen oder Clustern auf dem Nickel-Substrat verteilen. Diese Gold-Cluster bilden wiederum ein regelmäßiges Muster unter dem Graphen. Dazwischen bleiben Nickelatome frei. Das Graphen bindet stark zum Nickel und wölbt sich so deutlich über den Gold-Clustern.
„Es sieht fast so aus wie ein Polster eines Chesterfield-Sofas”, erklärt Varykhalov. „An den Punkten, an denen Gold und Kohlenstoff in enge Berührung kommen, entsteht die extrem hohe Spin-Bahn-Wechselwirkung, die wir beobachten. Dieses Ergebnis wird durch Rastertunnelmikroskopie und Dichtefunktionsanalysen gestützt“.
HZB / JOL