21.01.2015

Sternenasche zu Tiefseestaub

Kosmischer Staub aus Tiefsee-Sedimenten erlaubt Rückschluss auf Elementsynthese in Supernovae.

Am Ende der Lebenszeit eines großen Sterns steht die Supernova. Dabei leuchtet der Stern kurzzeitig so hell wie eine ganze Galaxie, erzeugt aber auch die schwereren chemischen Elemente wie Silber, Zinn, oder Jod. „Winzige Überbleibsel von diesen entfernten Explosionen werden von der Erde auf ihrem Weg durch die Milchstraße eingefangen“, erklärt Anton Wallner, der die Messungen an der Fakultät für Physik der Universität Wien geleitet hat und jetzt als Gruppenleiter an der australischen Nationaluniversität in Canberra forscht. Ein internationales Team von Forschern der Universität Wien, der ANU (Australian National University) in Canberra, der TU München und der Hebrew University Israel hat nun mit Hilfe der Beschleunigeranlage VERA (Vienna Environmental Research Accelerator) der Universität Wien hat nun ebensolchen interstellaren Staub analysiert und dabei einen wichtigen Baustein für das Verständnis der Elemententstehung entdeckt.

Abb.: Die Fotocollage illustriert, wie kosmischer Staub aus Supernova-Explosionen auf die Erde gelangt ist. Der Krebsnebel ist ein Supernova-Überrest aus dem Jahr 1054 in 6300 Lichtjahren Entfernung. (Bild: J. Hester, A. Loll, Arizona State University)

„Wir haben galaktischen Staub untersucht, der sich während der letzten 25 Millionen Jahre am Meeresboden abgesetzt hat. Überraschend war, dass wir von besonders schweren und seltenen Elementen wie zum Beispiel Plutonium viel weniger fanden, als wir erwartet haben“, erklärt Wallner. Diese Ergebnisse widersprechen Theorien, dass diese schweren Elemente am Ende ihres Sternenzyklus in Supernova-Explosionen gebildet und dann im interstellaren Raum verteilt werden. Solche Explosionen sind auf kosmischen Zeitskalen ziemlich häufig. Supernova-Explosionen produzieren beispielsweise auch Blei, Gold und Quecksilber. Diese Elemente sind auf der Erde jedoch reichlich vorhanden und eignen sich daher nicht als Erkennungszeichen für kosmischen Staub.

Die Forscher untersuchten Tiefseesedimente, darunter auch eine zehn Zentimeter dicke Eisen-Mangan-Kruste aus 5000 m Tiefe. Diese über 25 Millionen Jahre alten Ablagerungen enthielten neben Spurenelementen aus dem Ozean auch interstellare Partikel. „Mittels Messungen an unserer Beschleunigeranlange Vienna Environmental Research Accelerator – kurz VERA genannt – gelang es, die wenigen Plutoniumatome mit einer Sensitivität nachzuweisen, die etwa ein Salzkorn aus der Wassermenge von zwanzig Bodenseen herausfiltern könnte“, erklärt Peter Steier, Isotopenforscher an der Universität Wien, die sprichwörtliche Suche im Heuhaufen. VERA ist eine der weltweit sensitivsten Anlagen, um winzigste Spuren von seltenen Elementen in unserer Umwelt nachzuweisen.

Die Forscher suchten nach Spuren von Plutonium-244, einem radioaktiven Isotop, das nicht natürlich auf der Erde vorkommt. Plutonium-244 zerfällt mit einer Halbwertszeit von 81 Millionen Jahren. Man kann es daher als kosmische Uhr über seinen radioaktiven Zerfall nutzen. Es eignet sich als sensitiver Zeitmarker explosiver Elemententstehung. „Plutonium-244, das zu der Zeit existierte, als sich die Erde und unser Sonnensystem vor über vier Milliarden Jahren bildeten, ist in der langen Zeit seither zerfallen“, erläutert Kernphysiker Wallner. Findet man es trotzdem, so muss es aus kosmischen Explosionen jüngerer Zeit stammen, genauer aus den letzten paar hundert Millionen Jahren. Anschließend muss es dann in die Tiefseesedimente eingelagert worden sein, die als natürliche Archive dienen.

„Es scheint also, dass zumindest während der letzten paar hundert Millionen Jahre die schwersten Elemente in der Tat nicht in 'normalen' Supernovae gebildet wurden“, erklärt Wallner. Die Ergebnisse favorisieren nun sehr seltene kosmische Explosionen, möglicherweise die Verschmelzung von zwei Neutronensternen, als Entstehungsort des chemischen Elements. Diese, obwohl hundert- bis tausendmal seltener, können durch ihre gewaltige Detonation ebenfalls alle schweren Elemente im beobachteten Ausmaß produzieren.

Schwere Elemente, wie Plutonium-244, waren bei der Bildung des Sonnensystems vorhanden. Dies konnte durch stabile Xenon-Isotope, die bei der Spontanspaltung von Plutonium-244 entstehen, in Meteoriten nachgewiesen werden. Thorium und Uran gibt es aufgrund ihrer deutlich längeren Halbwertszeit immer noch, daher muss eine derartige, offenbar sehr seltene, Explosion zeitnah zur Entstehung des Sonnensystems stattgefunden haben. Natürliche radioaktive Elemente wie Uran und Thorium erzeugen einen Großteil der Wärme im Erdinneren. Diese ist ein wesentlicher Antrieb für Vulkanismus und die Bewegung der Kontinente.

U. Wien / DE

Weiterbildung

Weiterbildungen im Bereich Quantentechnologie
TUM INSTITUTE FOR LIFELONG LEARNING

Weiterbildungen im Bereich Quantentechnologie

Vom eintägigen Überblickskurs bis hin zum Deep Dive in die Technologie: für Fach- & Führungskräfte unterschiedlichster Branchen.

Virtuelle Jobbörse

Virtuelle Jobbörse
Eine Kooperation von Wiley-VCH und der DPG

Virtuelle Jobbörse

Innovative Unternehmen präsentieren hier Karriere- und Beschäftigungsmöglichkeiten in ihren Berufsfeldern.

Die Teilnahme ist kostenfrei – erforderlich ist lediglich eine kurze Vorab-Registrierung.

Meist gelesen

Themen