Strom aus Torsionsschwingungen
Schifffahrt soll von autarken Sensoren für rotierende Systeme profitieren.
Umweltverträglicher und energieeffizienter sollen zukünftige Schiffsgenerationen auf den Weltmeeren unterwegs sein. Das Projekt „SmartPS“ am Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF leistet mit der Entwicklung eines intelligenten Antriebsstrangs einen wesentlichen Beitrag zum Gelingen dieser Forderung. Dazu zapfen die Darmstädter Wissenschaftler mit einem Energy Harvesting-Konzept bisher ungenutzte Energiequellen, wie beispielsweise Torsionsschwingungen an. Die Sensorik ist Teil des rotierenden Systems und somit direkt an der Wirkstelle angebracht. Das Besondere: Belastungs- und Zustandsdaten aus dem Antriebsstrang liegen über drahtlose Datenübertragung direkt beim Nutzer vor, sobald der Antriebsstrang rotiert.
Diese Informationen dienen einer bedarfsgerechten und kostengünstigeren Wartung, und sie können die Entwicklung neuer Antriebsgenerationen in Richtung einer leichteren Dimensionierung unterstützen. Die Sensorik ist dabei unabhängig von externen Energiequellen. Heute führt der Ausfall maritimer Systeme aufgrund defekter Antriebsstrangkomponenten zu erheblichen wirtschaftlichen Schäden, hervorgerufen durch Stillstandzeiten und damit einhergehenden Lieferverzögerungen beziehungsweise Ertragsausfälle. Abhilfe sollen intelligente Antriebsstränge durch den Einsatz rotierender, energieautarker Sensorsysteme schaffen.
Bislang liegt das Problem rotierender Sensorik in der Energieversorgung, da diese Batterien benötigt, deren Lebensdauer beschränkt ist. Wenn die Energieversorgung über das Bordnetz eines Schiffes erfolgt, müssen Schleifringe eingesetzt werden, um die elektrische Energieversorgung zwischen stehendem und rotierendem System zu ermöglichen. Der Nachteil: Die Schleifringe verschleißen sehr stark und sind daher wartungsintensiv. Abhilfe wollen die Wissenschaftler mit rotierenden Schwingungsenergiegeneratoren schaffen, die Torsionsschwingungen des Antriebsstrangs, also ungewollte und ungenutzte mechanische Energie, in elektrische Energie umwandeln.
Mit der Entwicklung energieautarker Sensorsysteme für rotierende Systeme, die direkt an der Wirkstelle sitzen, will das Fraunhofer-Institut eine zuverlässige Zustandsüberwachung und Belastungsanalyse ermöglichen. Das Konzept verzichtet auf Schleifringe und Batterien. Darüber hinaus wird es möglich, Sensoren an schwer erreichbaren Stellen in Antriebssträngen einzusetzen. Die Sensordaten werden drahtlos über Bluetooth oder WLAN übertragen. Bei der Erprobung des Generators in einem Prüfstand konnten die Forscher mehrere Milliwatt Leistung generieren, ausreichend für die MEMS (Micro Electro Mechanical System)-Sensoren. Unter anderem lassen sich damit zur Zustandsüberwachung Beschleunigungssensoren oder Temperatursensorik, beispielsweise ein Infrarot-Wärmesensor, betreiben.
Bei einem ersten Einsatz von Beschleunigungssensoren auf einer Schiffsantriebswelle konnten die Forscher zeigen, dass die Datenübertragung via Bluetooth aus dem Maschinenraum zu einem zentralen Rechner an Board möglich ist. Somit ließ sich die Drehschwingung des Schiffsantriebs erfolgreich aufzeichnen. Der nun entwickelte rotatorische Schwingungsenergie-Generator hat mehrere Vorteile: Sobald der Antriebsstrang rotiert, liefert die autarke Sensorik vorliegende Belastungs- und Zustandsdaten. Da Energiequelle und Sensorik in einem System integriert sind, wird die Sensorik unabhängig von vorhandener Bordelektronik. Darüber hinaus sind keine mechanischen Verbindungen zwischen rotierendem und stehendem System erforderlich, und es müssen keine Batterien gewartet oder ausgetauscht werden.
Bislang konzentriert sich das Forschungsprojekt zur Entwicklung der energieautarken Sensorik in rotierenden Systemen auf den maritimen Bereich. Zurzeit planen die Wissenschaftler die Erprobung und den Einsatz ihres neuartigen Systems in Schiffsantrieben. Künftig ist der Einsatz jedoch in jeglichen rotierenden Systemen, beispielsweise Kraftmaschinen, mit großen Wellendurchmessern, vorstellbar. Für das bis Ende 2019 laufende Vorhaben sind Folgeprojekte geplant, die unter anderem auch die Entwicklung eines marktreifen Produktes zum Ziel haben.
Fh.-LBF / JOL