Stromfluss in Perowskiten
Kristalle für Solarzellen nutzen Elektronenspin für eine effiziente Stromerzeugung.
Physiker der Friedrich-Alexander-Universität Erlangen-Nürnberg haben nachgewiesen, dass einfallendes Licht die Elektronen in warmen Perowskiten in Drehung versetzt und damit die Richtung des Stromflusses bestimmt. Damit entschlüsseln sie eine wichtige Eigenschaft dieser Kristalle, die bei der Entwicklung neuartiger Solarzellen eine wichtige Rolle spielen könnten. Seit einigen Jahren gelten Perowskite als Hoffnungsträger für eine kostengünstige Nutzung des Sonnenlichts, da sie sich chemisch einfach herstellen lassen. Unter Laborbedingungen liefern Prototypen erstaunliche Wirkungsgrade.
Abb.: Orthorhombische Kristallstruktur eines Perowskitminerals. (Bild: MIPT)
Was genau Perowskite so leistungsfähig macht, darüber gibt es bislang wenig Erkenntnisse. „Entscheidend für die kostengünstige Erzeugung elektrischer Energie aus Sonnenlicht sind zwei Faktoren“, sagt Daniel Niesner vom Lehrstuhl für Festkörperphysik. „Zum einen muss das Licht möglichst viele Elektronen in einer möglichst dünnen Schicht anregen. Zum anderen müssen diese Elektronen möglichst ungehindert zu den Elektroden fließen können, die den Strom abgreifen.“ Vermutet wird, dass Perowskite die Rotation der Elektronen für einen effizienten Stromfluss besonders gut ausnutzen: „Jedes Elektron hat einen Spin, ähnlich der Eigendrehung einer Billardkugel“, erklärt Niesner. „Wie bei Billardkugeln eine Links- oder Rechtsdrehung beim Anstoßen zu einer gekrümmten Bahn auf dem Tisch führt, hat man auch für Elektronen in Perowskiten vermutet, dass Drehung und Vorwärtsbewegung aneinander gekoppelt sein könnten.“
Genau diese Vermutung haben die Erlanger Physiker nun erstmals bestätigt. Für ihr Experiment verwendeten sie einen Laser, dessen Licht selbst einen Spin besitzt. Das Ergebnis: Bestrahlt man den Kristall mit linksdrehendem Licht, werden die Elektronen in eine Linksbewegung versetzt. Wird die Drehrichtung des Lichts umgekehrt, kehrt sich auch die Stromrichtung um. „Die Experimente zeigen eindeutig, dass die Drehrichtung der Elektronen und die Fließrichtung des Stroms miteinander verknüpft sind", sagt Niesner.
Bisher gingen die Wissenschaftler davon aus, dass die atomare Struktur von Perowskiten für ein solches Verhalten zu geordnet ist. In der Tat zeigen Versuche mit gekühlten Perowskit-Kristallen nur einen sehr schwachen Zusammenhang zwischen der Drehrichtung der Elektronen und der Fließrichtung des Stroms. „Das ändert sich jedoch, wenn man den Kristall auf Raumtemperatur aufwärmt, weil die Bewegung der Atome zu fluktuierenden Abweichungen von der hochgradig geordneten Struktur führt“, sagt Niesner. „Die Wärme erlaubt dem Perowskit-Kristall, Dreh- und Fließrichtung der Elektronen zu verknüpfen. Ein gewöhnlicher Kristall könnte das nicht.“
Mit der Entdeckung des Zusammenhangs von Wärme und Elektronen-Spin sind die Forscher einem zentralen Aspekt des ungewöhnlichen Stromflusses in Perowskiten auf die Spur gekommen. Ihre Arbeit könnte dazu beitragen, die hohe Energieeffizienz dieser Kristalle besser zu verstehen und neue Materialien für die Photovoltaik der Zukunft zu entwickeln.
FAU / JOL