Terahertz-Strahlung mit Spinwellen gekoppelt
Wichtiger Schritt für die Entwicklung von Spintronik-Anwendungen.
Ein internationales Forschungsteam unter Leitung des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) hat eine neue Methode zur effizienten Kopplung von Terahertz-Wellen mit deutlich kurzwelligeren Spinwellen entwickelt. Diese Experimente klären im Zusammenspiel mit theoretischen Modellen die grundlegenden Mechanismen dieses bisher für unmöglich gehaltenen Prozesses auf. Die Ergebnisse sind ein wichtiger Schritt für die Entwicklung neuartiger, energiesparender spinbasierter Technologien zur Datenverarbeitung.
„Wir konnten hochenergetische Spinwellen durch Terahertz-Licht in einem sandwichartigen Materialsystem effizient anregen, das aus zwei wenige Nanometer dünnen Metallfilmen mit einer dazwischen eingelagerten ferromagnetische Lage besteht“, sagt Sergey Kovalev vom Institut für Strahlenphysik. In ferromagnetischen Materialien besteht zwischen den Elektronenspins eine sehr starke Wechselwirkung, und infolgedessen setzt sich eine lokal begonnene Präzession in Form einer Spinwelle in der gesamten ferromagnetischen Materialschicht fort. Das ist deshalb interessant, weil eine Spinwelle als Informationsträger genutzt werden kann. Und weil die Spins der Elektronen dabei zwar kreiseln, aber in den betrachteten Ferromagneten an ihren Plätzen bleiben, fließt kein elektrischer Strom. Anders als in heutigen Computerchips, gibt es in spinbasierten Bauteilen also keine Wärmeverluste durch Ströme.
Praktischerweise liegen die charakteristischen Frequenzen der hochenergetischen Spinwellen im Terahertz-Bereich. Das ist exakt der Zielbereich für neuartige ultraschnelle Technologien zur Datenübertragung und ‑verarbeitung. Die Kopplung der optischen Terahertz-Technologie mit spinbasierten Bauelementen könnte daher völlig neue und effiziente Konzepte für IT-Technologien ermöglichen. Ähnlich wie die Photonen beim Licht sind die Energien der Spinwellen im Magnonen gequantelt. Magnonen und Terahertz-Photonen besitzen dieselben Energien und sollten daher einfach ineinander umwandelbar sein. Doch auf dem Weg dorthin gibt es ein Problem – die völlig unterschiedliche Geschwindigkeit der beiden Wellenphänomene.
Terahertz-Wellen sind als elektromagnetische Strahlung mit Lichtgeschwindigkeit unterwegs, während Spinwellen an die Existenz wechselwirkender Spins gebunden sind. Ihre Ausbreitungsgeschwindigkeit ist hunderte Male kleiner als die des Lichts. Und während die Terahertz-Wellen eine Wellenlänge von etwas weniger als einem Millimeter besitzen, liegt sie bei Spinwellen hingegen im Bereich von nur wenigen Nanometern. Die Terahertz-Welle hat dadurch keine Chance, ihre Energie gezielt und direkt an eine viel langsamere Spinwelle zu übertragen. Zur Lösung des Problems haben die Forschenden eine Kombination hauchdünner metallischer Schichten aus Tantal und Platin ausgetüftelt, in deren Mitte sie eine dünne Lage einer ferromagnetischen Nickel-Eisen-Legierung einlagerten. Diese Materialkombination ist genau darauf abgestimmt, Signale aus der Welt des Lichtes in die Welt der Spins zu übersetzen.
Ihr funktionelles Schichtmaterial haben die Forscher am HZDR-Institut für Ionenstrahlphysik und Materialforschung entwickelt und hergestellt. Dazu dampften sie schrittweise Metallfilme auf ein dünnes Glassubstrat auf. „Im Experiment haben wir dann die Proben mit intensiven Terahertz-Pulsen beschossen und ihre zeitlich schnell variierende Magnetisierung mit optischen Laserpulsen gemessen. Dabei fanden wir charakteristische Schwingungen der Magnetisierung, auch für Zeitpunkte in denen der anregende Terahertz-Puls gar nicht mehr mit der Probe in Wechselwirkung stand“, erklärt Kovalev. „Wir haben viele Faktoren variiert, wie äußere Magnetfelder und unterschiedliche Materialzusammensetzungen der Lagen, bis wir sicher zeigen konnten, dass es sich tatsächlich um die gesuchten Spinwellen handelt“, sagt Teamkollege Ruslan Salikhov, der an neuen funktionalen magnetischen Materialien arbeitet.
Für diese Umwandlung einer elektromagnetischen Welle in eine Spinwelle hat sich das Team eine ganze Reihe verschiedener Quanteneffekte zunutze gemacht. Diese Effekte sorgen bildlich gesprochen dafür, dass Terahertz- und Spinwelle einander verstehen. Zunächst beschleunigt die Terahertz-Strahlung freie Elektronen im Schwermetall, sodass mikroskopische Ströme entstehen können. Diese Ströme werden durch den Spin-Hall-Effekt in Spinströme umgewandelt, die nur eine ganz bestimmte Spin-Ausrichtung aufweisen und somit den resultierenden Drall im Ortsraum transportieren können. An den Grenzflächen zwischen Schwermetall und Ferromagnet übt dieser Drall dann ein Drehmoment auf die Spins im Ferromagneten aus. Dieses Drehmoment liefert genau die Störung, die zur Entstehung von Spinwellen führt.
Durch den Vergleich verschiedener Proben konnten die Wissenschaftler nun zeigen, dass das Terahertz-Feld selbst nicht in der Lage ist, unmittelbar Spinwellen zu erzeugen. Erst der Umweg führt zum Erfolg. Damit konnten sie theoretische Vorhersagen zur Effizienz der Spin-Bahn-Drehmomente auf Pikosekunden-Zeitskalen bestätigen. Das neue Probensystem funktioniert daher als Terahertz-getriebene Quelle für Spinwellen, die sich prinzipiell leicht in Schaltkreise integrieren ließe. Diese Arbeit ist ein wichtiger Schritt auf dem Weg zur Nutzung von Terahertz-Technologie in neuartigen Elektronikkomponenten. Gleichzeitig eröffnet die gezeigte Methode neue Möglichkeiten zur berührungslosen Charakterisierung spinbasierter Bauteile.
HZDR / JOL