11.02.2013

„Thermal squeezing“ bringt Atome zum Tanzen

Kasseler Physiker entdecken Kollektivbewegungen von Atomen in Silizium – Ergebnisse könnten für Materialbearbeitung mit Lasern bedeutsam sein.

Jeder Festkörper besteht aus positiv geladenen Atomkernen und negativ geladenen Elektronen. Die Elektronen sind sehr viel leichter als die Atomkerne und können sich daher im Festkörper viel schneller bewegen und ihre Positionen unverzüglich einnehmen. Diese Eigenschaft der Elektronen wirkt wie eine Art Kleber, der die Atome zusammenhält. Dieser Kleber ist es auch, der darüber entscheidet, wie sich die Atome in einem Kristall anordnen.

Ein Forschungsteam der Universität Kassel hat nun eine neue Möglichkeit entdeckt, diesen Klebeeffekt zu manipulieren und ihn sich damit für die Materialbearbeitung zunutze zu machen. Es berechnete dafür das Verhalten der Elektronen unter dem Einfluss ultrakurzer Laserpulse von moderater Intensität.

Wenn ein Laserpuls von der Dauer einer billionstel Sekunde die Elektronen anregt, werden diese heiß und ändern dadurch ihre Klebeeigenschaften. Eine Anregung mit einem sehr intensiven Laserpuls kann dazu führen, dass die Klebefunktion teilweise verschwindet, sodass der Festkörper schmilzt. „Dieser Prozess wird ultraschnelles Schmelzen genannt und unterscheidet sich vollkommen von dem alltäglichen thermischen Schmelzen, ungefähr so wie ein Lottogewinn vom regelmäßigen Sparen“, formuliert Eeuwe Zijlstra, der an dem Experiment beteiligt war. Die Zeitskalen und die Effekte seien grundverschieden.

Während der für die Materialbearbeitung wichtige Prozess des ultraschnellen Schmelzens schon bekannt ist, widmeten sich die Kasseler Wissenschaftler der Frage: Wie reagieren die Atome auf Laserpulse, deren Intensität nicht ausreicht, das Material zum Schmelzen zu bringen? Um diese Frage zu beantworten, wählten die Kasseler Wissenschaftler das für die Industrie unverzichtbare Element Silizium und führten mit Hilfe eines Computerprogramms namens CHIVES mehrere Simulationen einiger hundert Atome durch. Die Auswertung der Berechnungen ergab, dass die Atome sich synchronisiert im Kollektiv bewegen, ähnlich wie beim Formationstanzen. Die Amplitude der Atombewegung ist periodisch größer bzw. kleiner als im Gleichgewicht. Man nennt diesen Effekt „thermal squeezing“.

Des Weiteren konnten die Wissenschaftler einen Zusammenhang zwischen dem „thermal squeezing“ bei niedrigen Intensitäten und dem ultraschnellen Schmelzen bei hohen Intensitäten finden: Bestimmte Klebe-Eigenschaften behalten die Elektronen sowohl beim „squeezing“ als auch beim Schmelzen bei. Dadurch wird eine weitere Lücke im Verständnis von Laseranregung mit ultrakurzen Pulsen geschlossen.

Nach Ansicht der Kasseler Physiker wird die neu gewonnene wissenschaftliche Erkenntnis sehr nützlich für die Lasermaterialbearbeitung sein. So öffneten diese Ergebnisse neue Möglichkeiten, nichtthermisches Schmelzen zu steuern, etwa um ein Material mit Strukturen zu versehen. Darüber hinaus könne man auf der Basis von zeitaufgelösten Röntgenbeugungsexperimenten mit Hilfe dieser Theorie eindeutig entscheiden, welche Materialien thermisch und welche nicht thermisch schmelzen.

U. Kassel / PH

ContentAd

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe

Die HiPace 10 Neo ist ein effizienter, kompakter Allrounder für den Prüfalltag, der geräuscharm und besonders energieeffizient ist.

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

Meist gelesen

Themen