Topologie von Lichtwellen
Spezieller Laser emittiert Licht mit topologischen Eigenschaften.
Topologie kann nicht nur für neue Materialien sondern auch für die Erzeugung von Laserlicht eine entscheidende Rolle spielen. Durch eine Kooperation der TU Wien mit Forschungsteams aus den USA wurde ein spezieller Laser entwickelt, der Lichtstrahlen mit charakteristischen topologischen Eigenschaften emittiert. Topologische Eigenschaften sind relativ stabil gegenüber Störungen.
„Die erlaubten Energiewerte eines Systems können zumeist nur auf ganz bestimmten Flächen liegen. Die topologische Struktur dieser Flächen bestimmt dann mitunter die Eigenschaften des ganzen Objektes“, erklärt Stefan Rotter vom Institut für theoretische Physik. „Das sind keine Flächen im dreidimensionalen Raum, wie wir ihn kennen, sondern im Raum der Energiewerte – aber das Prinzip bleibt dasselbe“, erklärt seine Kollege Alexander Schumer. Auch diese Flächen in abstrakten, mathematisch definierten Parameterräumen werden durch kleine Störungen bloß verformt, bewahren aber ihre topologischen Eigenschaften.
Schumer und Rotter forschen in Wien schon seit längerer Zeit mit Hilfe von Computersimulationen an den topologischen Eigenschaften von Lichtwellen. Wie man die daraus gewonnenen Erkenntnisse in der Laserphysik einsetzen kann, war Gegenstand von Alexander Schumers Doktorarbeit. Der nun realisierte Laser besteht aus zwei dicht beieinanderliegenden Licht-Bahnen. Entlang dieser Bahnen kann sich das Licht ausbreiten, an ihren Enden wird es reflektiert. Während des Hin- und Herlaufens kann das Licht von einer Licht-Bahn auf die andere wechseln, es kann durch Energiezufuhr von außen verstärkt oder auch abgeschwächt werden.
„So gelang es, einen Laser zu bauen, dessen Energien einer topologisch nicht trivialen Schleife folgen“, sagt Schumer. Im gewöhnlichen dreidimensionalen Raum betrachtet geht das Licht einfach vor und zurück. Stellt man hingegen den Weg, den das Licht im Laser zurücklegt, im Raum der möglichen Energiewerte dar, dann zeigt sich: Die Energie beschreibt eine Schleife rund um einen Ausnahmepunkt im Energieraum. „Diese topologische Schleife im Energieraum mag abstrakt und belanglos wirken, hat jedoch für das Licht im Laser eine entscheidende Auswirkung: die Energie des Lichts kehrt bei der Umrundung des Ausnahmepunkts nicht zu ihrem Ausgangspunkt zurück, sondern zu einem anderen Punkt – ähnlich wie eine Bahn auf einem Möbius-Band“, erklärt Schumer.
Wenn man nun beide Seiten des Lasers leuchten lässt, werden genau diese beiden unterschiedlichen Endpunkte der Bahn um den Ausnahmepunkt sichtbar: die zwei Lichtstrahlen, die vom Laser in die entgegengesetzte Richtung emittiert werden, weisen den charakteristischen Unterschied auf, dass sie sich auf einer Seite im Zentrum verstärken, auf der anderen Seite hingegen auslöschen. „Das ist eine direkte Konsequenz der topologischen Eigenschaften“, betont Schumer. „Damit haben wir gezeigt, wie man diese topologischen Konzepte auch in der Laserphysik zugänglich machen kann, ohne auf photonische Gitter oder Kristallstrukturen zurückgreifen zu müssen“, sagt Rotter. „Das könnte, ähnlich wie in der Festkörperphysik, zu wichtigen neuen Anwendungsmöglichkeiten führen. Man könnte damit möglicherweise besonders robuste, starke Laser bauen, in denen man über einen langen Pfad hinweg das Licht verstärken kann.“
TU Wien / JOL
Weitere Infos
- Originalveröffentlichung
A. Schumer et al.: Topological modes in a laser cavity through exceptional state transfer, Science 375, 884 (2022); DOI: 10.1126/science.abl6571 - Institut für Theoretische Physik (S. Rotter), Technische Universität Wien