05.08.2009

Trennung nach Maß

Würzburger Forschern ist es gelungen, den physikalischen Prozess der Umwandlung von Licht in Strom bei organischen Solarzellen aufzuklären

Würzburger Forschern ist es gelungen, den physikalischen Prozess der Umwandlung von Licht in Strom bei organischen Solarzellen aufzuklären

Eigentlich ist das Prinzip einer organischen Solarzelle ganz simpel. Stark vereinfacht dargestellt, funktioniert die Zelle so: Zwischen zwei "Stromabnehmern" befinden sich zwei Substanzen, die sich so wenig mischen wie Wasser und Öl. Die eine - zumeist ein Polymer - gibt Elektronen ab, wenn Licht auf sie trifft. Die andere - in der Regel ein so genanntes Fulleren, also Kohlenstoff, der kugelförmig angeordnet ist - nimmt die Elektronen auf und leitet sie an den entsprechenden Abnehmer, die Kathode, weiter. Strom fließt. So weit das Prinzip, und so funktioniert ja auch die Praxis.

"Ja, organische Solarzellen funktionieren", sagt Vladimir Dyakonov. Und ergänzt sogleich: "Nach der bisher gängigen Theorie dürften sie das allerdings nicht." Dyakonov ist Inhaber des Lehrstuhls für Experimentelle Physik 6 an der Universität Würzburg; seit mehr als einem Jahrzehnt forscht er an den Strom-aus-Licht-Produzenten, die, anders als die bekannten Module auf Häuserdächern, nicht auf Silizium basieren, sondern statt dessen organische Substanzen verwenden. Dabei hat sich Dyakonov auch mit der Frage befasst, welche physikalischen Prozesse den Stromfluss ermöglichen. Gemeinsam mit seinem Wissenschaftlichen Mitarbeiter Carsten Deibel hat er nun eine Antwort gefunden.

"Nach den gängigen physikalischen Gesetzen sind die vom Licht erzeugten positiven und negativen Ladungen, die immer paarweise auftreten, eigentlich nur schwer zu trennen, da sie einander anziehen", erklärt Dyakonov. Die Vorstellung, Licht könne Elektronen aus einem Atom oder Molekül quasi herauskicken, stimmt nämlich nur ansatzweise. Absorbiert das Polymer Licht, entstehen in Wirklichkeit so genannte "Exzitone". Die Elektronenwolke, die um ein Molekül herumschwirrt, ändert ihre Form, es kommt zu Ladungsverschiebungen, der Physiker spricht davon, dass ein "stark gebundenes Elektron-Loch-Paar" entsteht. Wie sich das Elektron endgültig daraus befreien kann, hat Carsten Deibel untersucht.

Mit Hilfe von Quantenausbeute-Messungen und der Fotolumineszenz-Spektroskopie hat er die 20 bis 30 Nanometer starken Schichten organischen Materials in den Solarzellen untersucht (ein Nanometer ist der millionste Teil eines Millimeters) und dabei die Energie bestimmt, die nötig ist, um die Ladungen zu trennen. Anschließend haben er und sein Diplomand Thomas Strobel am Computer in verschiedenen Modellen die komplexe Bewegung der Ladungspaare in Polymer-Fulleren-Solarzellen nachgebildet und tatsächlich Bedingungen gefunden, unter denen das berechnete Ergebnis mit dem Befund aus der Praxis übereinstimmt.

"Der ganze Prozess funktioniert nur, wenn das Polymer eine Mindestlänge besitzt", erklärt Deibel. Erst dann kann sich das Elektron an der Grenzfläche zum Fulleren lösen und anschließend entlang der Kohlenstoffkugeln zur Kathode wandern. Der positiv geladene Rest des Exzitons hingegen bleibt im Polymer und gleitet entlang dieser Ketten zur Anode. "Wir zeigen, dass ein Ladungsträger, der sich auf einem Polymerkettensegment befindet, von der anderen Ladung umso weniger angezogen wird, je länger dieses Segment ist", sagt Vladimir Dyakonov. Unter diesen Umständen könnten sich die Ladungsträger außerdem entlang der Polymerketten wesentlich schneller bewegen als bei kurzen Segmenten. Beide Effekte zusammen ermöglichen die sehr effiziente Trennung der Ladungspaare.

Tatsächlich zeigen Deibels Simulationen eine zehnfache Verbesserung des Photostromes, wenn die Länge der Polymerkettensegmente von einem auf zehn Nanometer erhöht wird. Zehn Nanometer sind typisch für die heute in der organischen Photovoltaik gebräuchlichen Polymer-Halbleiter. "Unsere Ergebnisse erklären somit, warum die derzeit besten Polymer-Fulleren-Solarzellen eine so gute Umwandlung von Licht in Strom erlauben", sagt Dyakonov.

Nachdem das Rätsel, warum Polymer-Fulleren-Solarzellen entgegen aller Theorie doch funktionieren, gelöst ist, arbeiten Dyakonov und Deibel jetzt daran, die grundlegenden Prozesse noch besser zu verstehen. Ihr Ziel ist es, mit diesem Wissen in die Entwicklung zu gehen und zusammen mit Chemikern neue Polymere zu konstruieren, die das eingestrahlte Licht effektiver als bisher in Strom umwandeln.

Die Vorteile organischer Solarzellen

Organische Solarzellen sind zwar noch nicht in der Lage Sonnenlicht ähnlich effizient in Strom umzuwandeln wie ihre Konkurrenten, die mit Silizium arbeiten. Während Letztere einen Wirkungsgrad von etwa 30 Prozent schaffen, kommen organische Zellen auf knapp sechs Prozent. Ihre Stärken liegen allerdings woanders: Weil sie auch transparent sein können, bieten sie sich beispielsweise für den Einsatz in Gebäuden an, wo sie Licht durchlassen und gleichzeitig Strom produzieren. Ihre Flexibilität prädestiniert sie für den mobilen Einsatz, beispielsweise auf Rucksäcken, die Handyakkus aufladen. Außerdem sind organische Solarzellen vergleichsweise einfach herzustellen. Im Prinzip können normale Druckmaschinen die Substanzen auf ein billiges Trägermaterial aufbringen wie Farbe auf große Papierrollen. Die Produktionskosten sind dabei vergleichsweise niedrig. Organische Solarzellen sind deshalb, wie Vladimir Dyakonov sagt, "vielversprechende Kandidaten für eine effiziente, preisgünstige Photovoltaik".

Julius-Maximilians-Universität Würzburg

 

Weitere Infos

 AL

EnergyViews

EnergyViews
Dossier

EnergyViews

Die neuesten Meldungen zu Energieforschung und -technologie von pro-physik.de und Physik in unserer Zeit.

Virtuelle Jobbörse

Virtuelle Jobbörse
Eine Kooperation von Wiley-VCH und der DPG

Virtuelle Jobbörse

Innovative Unternehmen präsentieren hier Karriere- und Beschäftigungsmöglichkeiten in ihren Berufsfeldern.

Die Teilnahme ist kostenfrei – erforderlich ist lediglich eine kurze Vorab-Registrierung.

Meist gelesen

Themen