Turbulenzen im Blutstrom
Verwirbelungen treten viel häufiger auf als die klassische Strömungsmechanik-Theorie vorhersagt.
Können wir tatsächlich davon ausgehen, dass unser Herz das Blut so langsam durch unsere Arterien pumpt, dass ein gleichmäßiger, turbulenzfreier Blutstrom entsteht? Nun weist ein internationales Forschungsteam nach, dass es in unseren Blutbahnen oft turbulenter zugeht als es für den menschlichen Körper von Vorteil wäre. Unregelmäßigkeiten im Blutstrom fördern nachweislich Entzündungen und Funktionsstörungen der inneren Schicht der Blutgefäße, dem Endothel. Entzündungen in der Endothelzellschicht können wiederum zur Entwicklung von Arteriosklerose führen, der Zivilisationskrankheit, die als weltweit häufigste Todesursache gilt. Studienleiter Duo Xu arbeitet an Strömungen seit vier Jahren am Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) an der Universität Bremen.
„Pulsierende Strömungen durch Rohrgeometrien sind bei moderaten Geschwindigkeiten laminar“, berichten Xu und Kollegen. So entstehen in einer Flüssigkeit keine Verwirbelungen, wenn sie ausreichend langsam durch ein Rohr gepumpt wird. Generell sind pulsierende Strömungen zwar turbulenzanfälliger als stetig fließende Strömungen, dennoch ist man bislang davon ausgegangen, dass aufgrund der geringen Geschwindigkeit und der hohen Viskosität des Blutes im menschlichen Kreislaufsystem keine Turbulenzen entstehen. Duo Xu hingegen hat nun nachgewiesen, dass ein turbulenzfreies Strömungsverhalten nur im Idealzustand immer erreicht wird.
Die zentrale Erkenntnis des Forschungsteams ist, dass pulsierende Strömungen sehr empfindlich auf geometrische Störungen reagieren und dadurch schon bei einer niedrigeren Strömungsgeschwindigkeit turbulent werden, als es bei einem nicht-pulsierenden, konstanten Massestrom der Fall wäre. Übertragen auf den menschlichen Blutstrom heißt das, dass Verwirbelungen viel häufiger auftreten als anhand der klassischen Strömungsmechanik-Theorie zu erwarten wäre, da in menschlichen Blutbahnen häufig Krümmungen, Unebenheiten oder auch Verengungen etwa durch arteriosklerotische Läsionen vorkommen.
Das Forschungsteam hat sowohl theoretisch, anhand von Simulationen, als auch experimentell nachgewiesen, dass Blutbahnen mit geometrischen Unregelmäßigkeiten Turbulenzen auslösen. In den Experimenten ist deutlich sichtbar, wie in der Phase, in der sich der pulsierende Blutstrom verlangsamt, an diesen kritischen Bereichen Verwirbelungen entstehen, die sich rasch zu einer Turbulenz ausweiten. Erst durch die erneute Beschleunigung mit dem nächsten Herzschlag beruhigt sich die Strömung wieder: sie wird laminar. Das bedeutet, dass in nicht ideal geformten Blutgefäßen in jedem einzelnen Pulszyklus eine Störung des Blutstroms auftreten kann.
Die Innenwand der Blutgefäße, das Endothel, reagiert sehr sensibel auf Scherspannungen. Im Normalfall sind die Endothelzellen auf einen gleichmäßigen Durchfluss in eine Richtung eingestellt. Wenn nun in jedem Pulszyklus eine Turbulenz mit entsprechenden Scherspannungsschwankungen und einer Strömungsumkehr auftritt, kann das zelluläre Dysfunktionen auslösen, die zu einer Entzündung des Endothels und langfristig zu Arteriosklerose führen können. Für Menschen mit kardiovaskulären Vorerkrankungen bedeutet das Forschungsergebnis, dass sie durch das Auftreten von Turbulenzen an bestehenden Unebenheiten oder Verengungen in den Blutgefäßen einem erhöhten Risiko zur Entstehung oder Fortschreitung von Arteriosklerose ausgesetzt sind. Doch auch bei gesunden Menschen können Turbulenzen auftreten, was uns eindrücklich die hohe Komplexität und Sensibilität unseres Blutkreislaufsystems verdeutlicht.
ZARM / JOL
Weitere Infos
- Originalveröffentlichung
D. Xu et al.: Nonlinear hydrodynamic instability and turbulence in pulsatile flow, Proc. Nat. Ac. Sc., online 11. Mai 2020; DOI: 10.1073/pnas.1913716117 - Strömungsmechanik, Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation ZARM, Universität Bremen