06.06.2005

Ungekannte Schärfe

Göttinger Wissenschaftler haben ein neues Gesetz entdeckt, wonach sich die Auflösung in der Fluoreszenzmikroskopie auf wenige Nanometer steigern lässt.


Ungekannte Schärfe

Göttinger Wissenschaftler haben ein neues Gesetz entdeckt, wonach sich die Auflösung in der Fluoreszenzmikroskopie auf wenige Nanometer steigern lässt.

Das von Ernst Abbe 1873 formulierte Gesetz zur beugungsbegrenzten Auflösung im Lichtmikroskop haben jetzt Wissenschaftler des Max-Planck-Instituts für biophysikalische Chemie in Göttingen überwunden und ein neues Gesetz, das in der Fluoreszenzmikroskopie eine unbegrenzte optische Auflösung ermöglicht, etabliert. Zukünftige Anwendungen reichen von der Abbildung des Zellinnern über die Vermessung von Nanostrukturen zur Herstellung von Computerchips bis hin zur besseren Vermessung des Reaktionsverhaltens von Proteinen. Die Forscher haben ihre Erkenntnisse in der Fachzeitschrift "Physical Review Letters" vorgestellt.

Abb. 1: Bilder jenseits der Beugungsgrenze. Obere Reihe: (a) Fluoreszenzgefärbte Poren einer porösen Membran sind mit herkömmlicher Auflösung als solche nicht zu erkennen. (b) Parallel dazu ausgeführte Abbildung mit Hilfe eines STED-Mikroskops (Stimulated Emission Depletion Mikroscopy) fördert ihre Struktur zutage. Confocal bedeutet, dass die herkömmlich aufgelösten Bilder in der linken Spalte mit einem state of the art Confocal-Lichtmikroskopieverfahren aufgenommen wurde, was zur Zeit das beste beugungsbegrenzte Standardverfahren der Lichtmikroskopie ist. Untere Reihe: Mit einem Elektronenstrahl gefertigte Nanostrukturen in fluoreszenzgefärbtem PMMA, aufgenommen zunächst mit herkömmlicher (confocal) Auflösung (c) sowie mit STED (d). Die Rohdaten von (c) und (d) wurden nach der Bildaufnahme durch eine lineare mathematische Entfaltung auf gleiche Weise geringfügig verbessert. Trotzdem kann das herkömmlich aufgenommene Bild in (c) nicht die Linienstruktur der Probe zutage fördern, während das STED-Mikroskop Linien mit bis zu 80 Nanometer Breite und 40 Nanometer Zwischenraum auflöst (d). Damit rückt die optische Abbildung in Bereiche vor, die bislang nur dem Elektronenmikroskop vorbehalten waren. (Bild: MPI für biophysikalische Chemie)

Seit seiner Erfindung im 17. Jahrhundert war das Lichtmikroskop wie kaum ein anderes Instrument Schlüssel für neue wissenschaftliche Erkenntnisse. Das gilt auch heute noch speziell für die Biologie, denn fokussiertes Licht ist das einzige Mittel, mit dem man das Innere lebender Zellen auf schonende Weise erkunden kann. Doch als Welle unterliegt fokussiertes Licht der Beugung, deren auflösungsbegrenzende Wirkung von Ernst Abbe bereits 1873 erkannt wurde. Abbe, dessen Todestag sich im Februar 2005 zum 100. Mal gejährt hat, hielt diese Grenze in einer Formel fest, die besagt, dass Strukturen feiner als 200 Nanometer (etwa vier Tausendstel einer Haaresbreite) im Lichtmikroskop nicht mehr getrennt wahrgenommen werden können.

Abbes Gesetz galt lange Zeit als praktisch unüberwindbar. Für eine höhere Auflösung müsste man - so die bisherige Lehrmeinung - ein aufwändiges Elektronen- oder Rastersondenmikroskop heranziehen. In den vergangenen Jahren ist es aber Forschern am Göttinger Max-Planck-Institut für Biophysikalische Chemie gelungen, mit der Stimulated Emission Depletion-Mikroskopie (STED) einen physikalisch schlüssigen Ansatz zu entwickeln und experimentell zu verifizieren, mit dem die Auflösungsgrenze in der Fluoreszenzmikroskopie überwunden werden kann.

Im STED-Mikroskop kann die für die Auflösung relevante Scheibe der Fluoreszenz deutlich kleiner als 200 Nanometer, prinzipiell sogar bis auf die Größe eines Moleküls (2 bis 5 Nanometer) verkleinert werden. Denn dieser Fokus unterliegt nicht mehr der Abbe’schen Formel, sondern einem neuen Gesetz, das sich von Abbes Formel um einen entscheidenden Faktor - einen Wurzelterm - unterscheidet.

Abb. 2: Das neue Gesetz, nach dem in der Fluoreszenzmikroskopie eine unbegrenzte Auflösung möglich ist. (Bild: MPI für biophysikalische Chemie / Stefan Hell)

Die Göttinger Forscher haben das neue Gesetz bereits experimentell nachgewiesen und darüber hinaus gezeigt, dass sich selbst mit herkömmlichen Objektiven und fokussiertem Licht Auflösungen von bis zu 16 Nanometer erreichen lassen. Damit haben die Forscher zum ersten Mal prinzipiell belegt, dass man fluoreszierende Proben auch mit fokussierender Optik auf der Nanoskala abbilden kann. In einer weiteren Studie zeigten die Wissenschaftler, dass man mit der STED-Mikroskopie feinste lithographische Strukturen von nur 40 bis 80 Nanometer Breite abbilden kann, falls man sie mit Fluoreszenzmolekülen markiert. Dies könnte für die Herstellung von Computerchips wichtig werden, da die Abbildung solcher Feinheiten bisher der Elektronenmikroskopie vorbehalten war.

Die Verkleinerung des effektiven Fluoreszenzfokus hat auch Auswirkungen auf Verfahren, mit denen man die Reaktionsbewegungen von Molekülen in Lösungen erforscht. Je kleiner die Fokalvolumina, desto effektiver und sensitiver sind diese Verfahren und desto genauer wird die Darstellung. Daher waren auch diese Verfahren durch Beugung bisher begrenzt. In einer dritten Arbeit wiesen die Göttinger Forscher jetzt nach, dass mit ihrem neuen Mikroskopie-Verfahren zum ersten Mal Messvolumina erreicht werden, die deutlich unterhalb der Auflösungsgrenze liegen. STED könnte daher in Zukunft auch die Analyse von pharmazeutischen Wirkstoffen und Protein-Interaktionen in Zellen deutlich verbessern.

Quelle: MPG / \[SH/TN/AT\]

Weitere Infos:

Weitere Literatur:

  • Hell, S. W., Strategy for far-field optical imaging and writing without diffraction limit, Phys. Lett. A 326(1-2): 140-145, (2004).  
  • Westphal, V., and S. W. Hell, Nanoscale Resolution in the Focal Plane of an Optical Microscope, Phys. Rev. Lett. 94: 143903, (2005).  
  • Westphal, V., J. Seeger, T. Salditt and S. W. Hell, Stimulated Emission Depletion Microscopy on Lithographic Nanostructures, J. Phys. B: At. Mol. Opt. Phys. 38: S695-S705

Weiterbildung

Weiterbildungen im Bereich Quantentechnologie
TUM INSTITUTE FOR LIFELONG LEARNING

Weiterbildungen im Bereich Quantentechnologie

Vom eintägigen Überblickskurs bis hin zum Deep Dive in die Technologie: für Fach- & Führungskräfte unterschiedlichster Branchen.

ContentAd

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe
ANZEIGE

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe

Die HiPace 10 Neo ist ein effizienter, kompakter Allrounder für den Prüfalltag, der geräuscharm und besonders energieeffizient ist.

Meist gelesen

Themen