06.02.2008

Vom Isolator zum Metall

Warum wird Manganoxid bei hohen Drücken plötzlich zum Metall? Das haben Physiker aus Augsburg, Russland und den USA untersucht.



Warum wird Manganoxid bei hohen Drücken plötzlich zum Metall? Das haben Physiker aus Augsburg, Russland und den USA untersucht.

Gemeinsam mit Kollegen aus Ekaterinburg (Russland) und Davis (USA) hat der am Augsburger „Center for Electronic Correlations and Magnetisms“ (EKM) forschende Physiker Jan Kuneš die Eigenschaften von Manganoxid (MnO) unter extremen Drücken erforscht. Die im Fachmagazin „Nature Materials“ publizierten Ergebnisse erklären den unter solch hohen Drücken erfolgenden Isolator-Metall-Übergang bei MnO und liefern auch wichtige Einsichten in die Physik anderer Oxide.

Die Fähigkeit, einen elektrischen Strom zu leiten, ist eine der fundamentalsten Eigenschaften von Materialien und gleichzeitig diejenige mit den meisten praktischen Anwendungen. Ein elektrischer Strom ist das Fließen von Elektronen aufgrund einer von außen angelegten Spannung. Ob ein Material ein Leiter oder ein Isolator ist, hängt üblicherweise von der Zahl der Elektronen und zum Teil auch von chemischen Details ab.

Da die Zahl der Elektronen durch die chemische Zusammensetzung festgelegt wird, ist es üblicherweise sehr schwierig, einen Isolator mithilfe äußerer Einflüsse wie Druck oder Temperatur in ein Metall zu verwandeln. Es gibt aber Ausnahmen. Wenn die Elektronen in dem Material stark miteinander wechselwirken, kann das Material zum Isolator werden – einfach deshalb, weil sich die Elektronen gegenseitig blockieren und sich daher in ihrer Bewegung behindern.

Derartige „stark korrelierte“ elektronische Materialien reagieren sehr empfindlich auf Druck oder Temperatur. Damit stellt sich die interessante Frage nach den Anwendungen solcher Materialien. Mit dieser Frage beschäftigen sich seit einigen Jahren bereits die Physikerinnen und Physiker im Augsburger DFG-Sonderforschungsbereich „Kooperative Phänomene im Festkörper: Metall-Isolator-Übergänge und Ordnung mikroskopischer Freiheitsgrade“ (SFB 484).

Jan Kuneš und seine Kollegen haben untersucht, weshalb sich Elektronen, die sich normalerweise im Weg stehen und daher keinen elektrischen Strom tragen können, bei hohen Drücken, wie sie tief im Inneren der Erde herrschen, plötzlich fast frei bewegen können und somit das Material ein elektrischer Leiter wird. Die Untersuchungen wurden durch die Anwendung neuester theoretischer Methoden ermöglicht, die in der Gruppe von Dieter Vollhardt (Lehrstuhl für Theoretische Physik III/EKM), dem Sprecher des SFB 484, entwickelt wurden.

Darüber hinaus konnten die Physiker zeigen, dass es eine enge Verbindung zwischen der Änderung in der Leitfähigkeit und dem Verschwinden der magnetischen Eigenschaften des Materials gibt. Die Ergebnisse sind nicht nur auf Manganoxid beschränkt, sondern liefern wichtige Einsichten in die Physik anderer Oxide, die für das Funktionieren alltäglicher elektronischer Geräte wie z. B. Schalter, Sensoren, Batterien, oder Magnetleseköpfe wichtig sind.

Quelle: Universität Augsburg

Weitere Infos:

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

Virtuelle Jobbörse

Virtuelle Jobbörse
Eine Kooperation von Wiley-VCH und der DPG

Virtuelle Jobbörse

Innovative Unternehmen präsentieren hier Karriere- und Beschäftigungsmöglichkeiten in ihren Berufsfeldern.

Die Teilnahme ist kostenfrei – erforderlich ist lediglich eine kurze Vorab-Registrierung.

Meist gelesen

Themen