23.07.2004

Welche Struktur haben Nanocluster?

Ein internationales Forscherteam konnte erstmals die atomare Struktur winziger Metall-Nanoteilchen aufklären.


?


Ein internationales Forscherteam konnte erstmals, die atomare Struktur winziger Metall-Nanoteilchen aufklären.

Berlin - Eine neue Methode, mit der man die atomare Struktur einzelner Metall-Nanoteilchen bestimmen kann, haben Wissenschaftler des Berliner Fritz-Haber-Institut der Max-Planck-Gesellschaft, des FOM-Instituts für Plasmaphysik in Nieuwegein/Niederlande, der Universität von Kalifornien in Los Angeles/USA sowie der Universität Nijmegen/Niederlande entwickelt. Die winzigen Teilchen aus nur 6 bis 23 Vanadium-Atomen wurden mit Hilfe der so genannten Ferninfrarot-Spektroskopie untersucht: Je nach ihrer Größe entstehen unterschiedliche Spektren, echte "Fingerabdrücke" ihrer atomaren Struktur. Aus dem Vergleich mit Spektren, die mit der Dichtefunktional-Theorie errechnet werden, kann man dann die geometrische Struktur der Nanoteilchen bestimmen.

Abb.: Die Infrarotspektren von größenselektierten Nanoteilchen (Clustern) wurden im Experiment gemessen. Die untere Kurve zeigt ein experimentelles Spektrum für einen Cluster aus acht Vanadium-Atomen. Mit Hilfe theoretischer Berechnungen können dann die Strukturen dieser Cluster und ihre Infrarotspektren bestimmt werden. Stimmen die berechneten und die experimentellen Spektren überein, kann man davon ausgehen, dass die berechneten Strukturen denjenigen entsprechen, die auch im Experiment nachgewiesen wurden. In der oberen Kurve ist ein gerechnetes Spektrum zusammen mit der entsprechenden Struktur zu sehen. Zieht man die Unwägbarkeiten von Theorie und Experiment in Betracht, so ist die Übereinstimmung sehr hoch. Im Hintergrund sieht man die Oberfläche eines Vanadium-Festkörpers. (Quelle: Fritz-Haber-Institut)

Kleine Metallpartikel gewinnen rasant an Bedeutung in der Nanotechnologie und Katalyse. Diese Nanoteilchen haben nur eine Größe von einigen wenigen bis einigen Hundert Atomen. Ihre Geometrie und Elektronenstruktur ist anders als die des Gesamtmaterials und sie können überraschende Eigenschaften aufweisen: So zeigen Gold-Nanopartikel katalytische Aktivität. Zudem können ihre Eigenschaften extrem von der Größe abhängen und sich bereits drastisch ändern, wenn man einem solchen Cluster nur ein einziges Atom hinzufügt. Ziel der Forschung ist es, solche Nanoteilchen in der Materialwissenschaft, der Nanoelektronik oder der Katalyse gezielt einsetzen zu können.

Heute ist die mikroskopische Struktur, also die Anordnung der Atome, in Festkörpern zumeist sehr detailliert bekannt. Die Kenntnis der Struktur ist wiederum eine elementare Voraussetzung, um die chemischen und physikalischen Eigenschaften von Materialien verstehen und nutzen zu können. Hingegen ist die Situation bei Nanoteilchen aus dem gleichen Material komplett anders: Diese Partikel zeigen faszinierende Eigenschaften, doch ihre innere atomare Struktur zu bestimmen ist äußerst schwierig.

Dem deutsch-niederländisch-amerikanischen Wissenschaftlerteam ist es nun gelungen, in einer Kombination aus experimentellen und theoretischen Untersuchungen die Struktur von Metall-Nanoteilchen zu bestimmen. Im Experiment haben sie die Schwingungseigenschaften der Teilchen mit Hilfe der Infrarot-Mehr-Photonen-Dissoziation (IR-MPD) gemessen und damit jene Kräfte bestimmt, die Atome im Nanoteilchen zusammenhalten. Die Experimente wurden am "Free Electron Laser for Infrared eXperiments (FELIX)" des FOM-Instituts durchgeführt. Die gemessenen Infrarotspektren hängen stark von der Teilchengröße und -struktur ab und sind charakteristisch für die geometrische Anordnung der Atome. Ein Vergleich mit quantenmechanischen Modellen, basierend auf der Dichte-Funktional-Theorie, gestattet es dann, die Strukturen der Nanoteilchen aufzuklären.

Diese Untersuchungen zeigen, dass man mit Ferninfrarot-Spektroskopie in Kombination mit theoretischen Berechnungen einzigartige Informationen über metallische Nanopartikel gewinnen kann. Diese schaffen die Grundlage für ein tieferes Verständnis der Struktur von Metall-Nanoteilchen, eine wichtige Voraussetzung, um sich deren Eigenschaften in Zukunft stärker zunutze machen zu können.

Dieses Projekt ist Teil des Forschungsprogramms der Stiftung "Stichting voor Fundamental Onderzoek der Materie" (FOM) der "Nederlands organisatie voor Wetenschappelijk Onderzoek" (NWO). Es wurde zudem unterstützt durch die Max-Planck-Gesellschaft, die Europäische Union sowie die Deutsche Forschungsgemeinschaft.

Quelle: MPG \[AT\]

Weitere Infos:

Virtuelle Jobbörse

Virtuelle Jobbörse
Eine Kooperation von Wiley-VCH und der DPG

Virtuelle Jobbörse

Innovative Unternehmen präsentieren hier Karriere- und Beschäftigungsmöglichkeiten in ihren Berufsfeldern.

Die Teilnahme ist kostenfrei – erforderlich ist lediglich eine kurze Vorab-Registrierung.

Weiterbildung

Weiterbildungen im Bereich Quantentechnologie
TUM INSTITUTE FOR LIFELONG LEARNING

Weiterbildungen im Bereich Quantentechnologie

Vom eintägigen Überblickskurs bis hin zum Deep Dive in die Technologie: für Fach- & Führungskräfte unterschiedlichster Branchen.

Meist gelesen

Themen