Weltall in Kristall
Kontrollierte Symmetriebrüche schaffen topologische Defekte in Ionen-Coulomb-Kristallen.
Wissenschaftler wüssten zu gerne, welche Kräfte unser Universum vor etwa 14 Milliarden Jahren schufen. Wie entstanden aus einem ursprünglich symmetrischen Universum, in dem kurz nach dem Urknall überall dieselben Bedingungen herrschten, durch einen Bruch der Symmetrie überhaupt Materie und damit Sterne und Galaxien?
Abb.: Ytterbium-Ionen in einem Ionen-Coulomb-Kristall; a) radial Fallensymmetrie, b) Spiegelsymmetrie; dabei stehen nun zwei energetisch gleichwertige Konfigurationen zur Wahl; dort wo zwei Bereiche zusammenstoßen, die unterschiedliche Ausrichtungen gewählt haben, entstehen topologische Defekte. (Bild: PTB)
Nun ist der Urknall selbst ein nicht zu wiederholendes Experiment. Doch das Prinzip der Symmetrie und ihrer Störung lässt sich durchaus unter kontrollierten Laborbedingungen untersuchen: Wissenschaftler des Exzellenzclusters QUEST (Center for Quantum Engineering and Space Time Research) in der Physikalisch-Technischen Bundesanstalt (PTB) nutzten dafür lasergekühlte Ionen in sogenannten Ionen-Coulomb-Kristallen. Sie konnten erstmals zeigen, wie sich Symmetriebrüche kontrolliert erzeugen lassen und dabei das Auftreten von Defekten beobachten. Die experimentelle Umsetzung dieser sogenannten topologischen Defekte in einem wohlkontrollierten System eröffnet nun neue Wege zur Untersuchung von Quanten-Phasenübergängen und Einsicht in die Nicht-Gleichgewichtsdynamik von komplexen Systemen.
In einer internationalen Kooperation mit Kollegen aus dem amerikanischen Los Alamos National Lab, der Universität Ulm und der Hebrew University in Israel gelang es den Forschern der PTB erstmals, topologische Defekte in einem atom-optischen Experiment im Labor zu demonstrieren. Topologische Defekte sind Abweichungen in der räumlichen Struktur, die durch den Bruch der Symmetrie entstehen, wenn Teile eines Systems nicht miteinander kommunizieren können. Sie bilden sich während eines Phasenübergangs und zeigen sich als nicht zusammenpassende Bereiche. Die Wissenschaftler nutzten bei ihrer Arbeit die Symmetrie-Eigenschaften in Ionen-Coulomb-Kristallen, die mit denen des frühen Universums vergleichbar sind.
Die experimentelle Herausforderung für die Forscher um Tanja Mehlstäubler lag darin, die sichere Kontrolle über ein komplexes Vielteilchensystem zu erlangen und durch eine gezielte Veränderung der äußeren Bedingungen die Symmetriebrechung herbeiführen zu können. Dies gelang mithilfe von Ytterbium-Ionen, die in Paul-Fallen im Ultrahochvakuum gefangen und mit Hilfe von Laserlicht auf Temperaturen von wenigen Millikelvin gekühlt wurden. Die gefangenen, positiv geladenen Teilchen stießen sich in der Falle ab und nahmen bei diesen ultra-tiefen Temperaturen eine kristalline Struktur an. Präzise Ionenfallen, welche für metrologische Anwendungen entwickelt wurden, erlaubten hierbei eine hohe Kontrolle der ultra-kalten Teilchen und der Umgebungsparameter.
Abb.: Verschiedene symmetrische Ionen-Anordnungen im zentralen Bereich des Coulomb-Kristalls; a) linear wie auf einer Perlenschnur, b) zweidimensional im Zick-Zack und c) als dreidimensionale Helix, d) lokalisierter Defekt zwischen zwei in sich symmetrischen Bereichen, e) ausgeweiteter Defekt. (BIld: PTB)
Veränderten die Forscher die Parameter des Falleneinschlusses schneller als die Schallgeschwindigkeit im Kristall, so traten topologische Defekte auf, während die Ionen eine neue Gleichgewichtsbedingung im Kristall suchten. Die Stabilität dieser Effekte ließ sich mit Hilfe numerischer Simulationen untersuchen und optimieren. Damit ergibt sich ein ideales System, um flexibel und mit höchster Sensitivität die Physik symmetriebrechender Übergänge zu erforschen. Die spontane Umorientierung des Coulomb-Kristalls folgt dabei denselben Regeln, die das frühe Universum nach dem Urknall beschreiben.
Die Arbeit der Forscher steht in enger Verbindung mit der sogenannten Kibble-Zurek-Theorie von Tom Kibble und Wojciech Zurek. Sie entstand aus Kibbles Ideen über spezielle topologische Defekte im jungen Universum: Bruchteile von Sekunden nach dem Urknall fand dort ein Symmetriebruch statt, und das junge Universum musste sich „entscheiden“, welchen neuen Zustand es annimmt. Dort, wo einzelne Bereiche des Universums ihre Entscheidung nicht miteinander kommunizieren konnten, könnten topologische Defekte wie kosmologische Strings und Domänenwände entstanden sein. Die Kibble-Zurek-Theorie ermöglicht aber auch statistische Aussagen zur Entstehung von Defekten bei Phasenübergängen im Allgemeinen. Durch ihren universellen Charakter ist diese Theorie auf viele Bereiche der Physik anwendbar, wie z. B. der Betrachtung des Übergangs von Metallen zu Supraleitern oder den Übergang von ferro- zu paramagnetischen Systemen.
Die internationale Forschergruppe zeigte jetzt mit ihrer Arbeit, dass sich die Kibble-Zurek Theorie auf das relativ einfache Laborsystem mit lasergekühlten Ionen-Coulomb-Kristallen übertragen lässt und konnte die Abhängigkeit der auftretenden topologischen Defekte von der Geschwindigkeit der Änderungen demonstrieren. Verwandte Experimente, welche parallel an der Universität Mainz durchgeführt wurden, kamen zu ähnlichen Ergebnissen.
PTB / PH