28.11.2011

Wenn die DNA gefährlich Rückgrat zeigt

Entstehung UV-induzierter DNA-Schäden mittels Femtosekunden-IR-Spektroskopie und Ab-initio-Rechnungen aufgeklärt.

Ultraviolette Anteile im Sonnenlicht können zu Schädigungen der Haut bis hin zum Hautkrebs führen. Grund dafür sind gefährliche DNA-Mutationen, die zur Folge haben, dass die Erbinformation nicht mehr oder nicht mehr korrekt abgelesen werden kann. Eine mögliche Mutation ist der Dewar-Schaden, der selbst wieder erbgutverändernde Schäden auslöst. Wissenschaftler konnten nun nachweisen, dass das DNA-Rückgrat dabei eine entscheidende Rolle spielt: Erst ein intaktes Rückgrat macht die Mutation möglich – ist das Rückgrat offen und damit flexibel, kann die Reaktion nicht ablaufen. Damit zeigt sich eine überraschende Doppelrolle des Rückgrats: Einerseits bildet es die Grundvoraussetzung für die Funktion der DNA und ist somit von fundamentaler Bedeutung für alle lebenden Organismen. Andererseits stellt es die Ursache für den Dewar-Schaden dar und trägt dadurch zur UV-induzierten Mutagenese bei.

Abb.: Der Mechanismus der Bildung des Dewar-Schadens wurde mit Femtosekunden-IR-Spektroskopie und Ab-initio-Rechnungen des angeregten Zustands untersucht. Die 4π-Elektrocyclisierung verläuft relativ langsam, findet mit einer ungewöhnlich hohen Quantenausbeute statt und wird – überraschenderweise – durch das Phosphat-Rückgrat kontrolliert. (Bild: Angew. Chem., K. Haiser)

UV-induzierte DNA-Schäden entstehen durch molekulare Veränderungen, die zu Strukturänderungen führen und Mutationen oder sogar den Zelltod einleiten können. Zunächst erzeugt die energiereiche UV-Strahlung hauptsächlich zwei Arten von Mutationen: sogenannte CPD-Schäden und (6-4)-Photoschäden. Beide entstehen, indem benachbarte DNA-Bausteine eine Verbindung eingehen. Aus dem (6-4)-Schaden kann bei fortgesetzter Aufnahme von UV-Strahlung eine weitere Strukturänderung erfolgen. Auf diese Weise entsteht ein Dewar-Schaden, der bei kontinuierlicher Sonnenbestrahlung ein stabiles Endprodukt darstellt - und hochmutagen ist, also selbst wieder erbgutverändernde Schäden auslöst.

Das Rückgrat des Erbguts besteht aus sich regelmäßig abwechselnden Zucker- und Phosphat-Molekülen, die den Protein-codierenden DNA-Bausteinen Halt geben. Die interdisziplinäre Zusammenarbeit von drei Arbeitsgruppen der Ludwig-Maximilians-Universität München aus den Bereichen Chemie, Physik und Theorie ermöglichte es, die photochemische Dewar-Bildung erstmals auf atomarer Ebene direkt zu verfolgen. „Dabei zeigten unsere Ergebnisse, dass die Dewar-Bildung bemerkenswert effektiv ist und zu einer der effizientesten lichtinduzierten Reaktionen der DNA gehört“, erläutert der Physiker Wolfgang Zinth.

Einblicke in die mechanistischen Details der photochemischen Dewar-Bildung kamen aus der Theorie. „Um die Photochemie auf hohem Niveau verfolgen zu können, haben wir eine neue Hybridmethode konzipiert, mit der wir die Dynamik in zusammengesetzten Molekülbereichen auf unterschiedlich hohem quantenmechanischem Niveau verfolgen können“, sagt die Chemikerin Regina de Vivie-Riedle.

Basierend auf ihren Berechnungen konnten die Wissenschaftler eindeutig klären, welche Rolle das DNA-Rückgrat für die Dewar-Bildung spielt: Ein offenes Rückgrat macht die Moleküle flexibel – dieser Zustand erlaubt nach einem (6-4)-Schaden nur den photophysikalischen Rückweg zum Ausgangsprodukt. Ein intaktes Rückgrat dagegen macht das Molekül starr: Die Ringspannung unterdrückt die Flexibilität, nur die Atome der neu zu bildenden Dewar-Bindung bleiben beweglich. Damit ist der Weg zum Dewar-Schaden frei.

LMU / PH

Virtuelle Jobbörse

Virtuelle Jobbörse
Eine Kooperation von Wiley-VCH und der DPG

Virtuelle Jobbörse

Innovative Unternehmen präsentieren hier Karriere- und Beschäftigungsmöglichkeiten in ihren Berufsfeldern.

Die Teilnahme ist kostenfrei – erforderlich ist lediglich eine kurze Vorab-Registrierung.

Weiterbildung

Weiterbildungen im Bereich Quantentechnologie
TUM INSTITUTE FOR LIFELONG LEARNING

Weiterbildungen im Bereich Quantentechnologie

Vom eintägigen Überblickskurs bis hin zum Deep Dive in die Technologie: für Fach- & Führungskräfte unterschiedlichster Branchen.

Meist gelesen

Themen