Wenn Licht und Elektronen gemeinsam rotieren
Kopplung intensiver Laser an Elektronenspins beeinflusst Emission von Licht auf ultraschnellen Zeitskalen.
Elektronen sind geladene Teilchen und reagieren daher auf die Einwirkung von Licht. Wenn ein intensives Lichtfeld auf einen Festkörper trifft, erfahren die Teilchen eine Kraft, die Lorentz-Kraft, die sie antreibt und eine exquisite Dynamik hervorruft, welche die Eigenschaften des Materials widerspiegelt. Das führt dazu, dass die Elektronen Licht in verschiedenen Farben aussenden – die hohen harmonischen Schwingungen.
Wie genau sich die Elektronen unter dem Einfluss des Lichtfelds bewegen, hängt von den Eigenschaften des Festkörpers ab, einschließlich seiner Symmetrien, Bandstruktur und Topologie, sowie von der Art des Lichtimpulses. Außerdem besitzen Elektronen einen Spin. Ein Team des MPI für Struktur und Dynamik der Materie hat jetzt untersucht, wie Licht und der Spin der Elektronen in Na₃Bi über einen als Spin-Bahn-Kopplung bezeichneten Effekt interagieren können. Na₃Bi ist ein topologisches Material, das als Dirac-Semimetall bekannt ist.
Der relativistische Effekt koppelt den Spin des Teilchens an seine Bewegung innerhalb eines Potenzials, welches durch intensives Licht auf einer ultraschnellen Zeitskala verändert werden kann. Das Verständnis, wie die Spin-Bahn-Kopplung die Elektronendynamik auf diesen Zeitskalen beeinflusst, ist ein wichtiger Schritt in der Erforschung der Elektronendynamik in komplexen Quantenmaterialien. In der Tat ist es die Spin-Bahn-Kopplung, die Quantenmaterialien für künftige technologische Anwendungen oft erst interessant macht. Es wird erwartet, dass sie zur nächsten Generation elektronischer Geräte führt, nämlich zu topologischen elektronischen Systemen.
Die Forscher zeigen, wie die Spin-Bahn-Kopplung die Geschwindigkeit der Elektronen in den Elektronenbändern von Festkörpern beeinflusst und wie ein Magnetfeld wirkt, das vom Spin der Elektronen abhängt. Sie zeigen, wie sich Änderungen der Elektronengeschwindigkeit auf die Elektronendynamik in Na₃Bi auswirken können und dass dieser Effekt manchmal nachteilige Folgen für die Erzeugung von Obertönen hoher Ordnung haben kann. Obwohl Na₃Bi nicht magnetisch ist, hat das Team gezeigt, dass der Spin der Elektronen für die Dynamik wichtig ist, denn er ist an das von den Elektronen empfundene Potenzial gekoppelt, welches durch das intensive Lichtfeld verändert wird.
Eine weitere wichtige Erkenntnis ist, dass die Spin-Bahn-Kopplung die Eigenschaften der emittierten hohen Harmonischen verändern kann, etwa Ihre zeitliche Abfolge. Diese Änderungen enthalten entscheidende Informationen über die interne Elektronendynamik. Insbesondere zeigen die Forscher, dass die ultraschnelle Spindynamik, die durch den Spinstrom gegeben ist, in der Eigenschaft des emittierten Lichts kodiert wird. In Anbetracht der Tatsache, dass es derzeit schwierig ist, Spinströme zu messen, eröffnet die Studie interessante Perspektiven für die Verwendung von intensivem Licht zur Durchführung von hochharmonischer Spektroskopie von Spinströmen sowie von Magnetisierungsdynamik oder ungewöhnlichen Spinstrukturen, die in Quantenmaterialien vorkommen können.
Die Untersuchung des Teams dient als Plattform für ein besseres Verständnis des Zusammenhangs zwischen Spin-Bahn-Kopplung, Spinstrom, Topologie und Elektronendynamik in Festkörpern, die von starken Feldern angetrieben werden - ein entscheidender Schritt zur Entwicklung von Petahertz-Elektronik auf der Grundlage von Quantenmaterialien.
MPSD / RK
Weitere Infos
- Originalveröffentlichung
N. Tancogne-Dejean, F. G. Eich & A. Rubio: Effect of spin-orbit coupling on the high harmonics from the topological Dirac semimetal Na3Bi, npj Comp. Mat. 8, 145 (2022); DOI: 10.1038/s41524-022-00831-6 - Abt. Theorie (A. Rubio), Max-Planck-Institut für Struktur und Dynamik der Materie, Hamburg