30.04.2025

Wie Lithium-Knopfzellen altern

Neues Verfahren offenbart, wie sich die Elementzusammensetzung der einzelnen Schichten während der Ladezyklen verändert.

Lithium-Knopfzellen mit Elektroden aus Nickel-Mangan-Kobalt-Oxiden (NMC) sind sehr leistungsfähig. Doch mit der Zeit lässt die Kapazität leider nach. Nun konnte ein Team erstmals mit einem zerstörungsfreien Verfahren beobachten, wie sich die Elementzusammensetzung der einzelnen Schichten in einer Knopfzelle während der Ladezyklen verändert. An der Studie waren Teams der Physikalisch-Technischen Bundesanstalt (PTB), der Universität Münster sowie Forschende der Forschungsgruppe SyncLab des HZB und des Applikationslabors BLiX der Technischen Universität Berlin beteiligt. Ein Teil der Messungen fand mit einem Instrument im BLiX-Labor statt, ein weiterer Teil an der Synchrotronquelle Bessy II.

Abb.: Elementverteilungen in einer Lithium-Knopfzelle nach 10.000 Ladezyklen
Abb.: Elementverteilungen nach 10.000 Ladezyklen: Oben links ist auskristallisierter Elektrolyt zu sehen, Eisen in den Metallkontakten und Kupfer aus dem Rückkontakt sind stabil geblieben, während Mangan aus der NMC-Kathode sich teilweise unten auf der Anode abgelagert hat.
Quelle: BLiX / TU Berlin / HZB

Weitere Nachrichten zum Thema

Photo
Photo
Photo

Als Kathodenmaterial in Knopfzellen hat sich die Kombination aus geschichteten Nickel-Mangan-Kobalt-Oxiden (NMC) mit einer Graphitanode bewährt, die ebenfalls stetig verbessert wurden. Dennoch halten selbst die besten Batterien nicht ewig, sie altern, und verlieren mit der Zeit an Kapazität. „Während sich eine Batterie auflädt oder entlädt, passiert an den Grenzschichten zwischen Anode, Separator und Kathode sehr viel“, erklärt Ioanna Mantouvalou, Physikerin am HZB. 

Typischerweise werden diese Veränderungen erst untersucht, nachdem die Batterie auseinandergebaut wurde, also ex situ und zu einem bestimmten Zeitpunkt der Zyklisierung. Doch das geht inzwischen auch anders: Bei in situ und operando Experimenten ist es möglich, in die Batterie hineinzuschauen, während die Prozesse ablaufen, und zwar mit Röntgenfluoreszenz (XRF) und Absorptionsspektroskopie (XAS) in einer konfokalen Geometrie. Diese Geometrie ermöglicht die 3D Abrasterung einer Probe mit Tiefenauflösungen ab zehn Mikrometern. An der Synchrotronquelle Bessy II sind solche Versuchsanordnungen bereits möglich. Doch Messzeit ist begrenzt, so dass Batterien nicht über ihre gesamte Lebensdauer untersucht werden können.

Daher nutzt Ioanna Mantouvalou im BLiX ein konfokales Mikro-Röntgenfluoreszenzspektrometer, das vollautomatisch auch über lange Zeiträume Proben analysieren kann. „Der konfokale Aufbau ermöglicht es, die einzelnen Schichten von der NMC-Kathode bis zum Rückkontakt zu unterscheiden und die jeweilige Elementzusammensetzung zu untersuchen. Damit erhalten wir räumlich aufgelöste Einblicke in den Betrieb, ohne den Schichtstapel zu verändern. Zerstörungsfrei! Quantitativ, unter Betriebsbedingungen, also operando“, sagt Mantouvalou.

Mehrere Wochen und über 10.000 Ladezyklen lang analysierten die Forschenden am BLiX-Instrument eine Lithium-Knopfzelle und ermittelten Daten zur Degradation der NMC-Elektrode mit der Zeit. Darüber hinaus wurde die Probe auch an der neuen Mikrofokus-Beamline (MiFO) im PTB-Labor an Bessy II untersucht. Die Untersuchung zeigt, dass sich in den ersten drei Wochen vor allem Mangan aus der NMC-Kathode löst und in Richtung der Kohlenstoffanode wandert. Dieser Prozess dauert rund 200 Zyklen. Danach löst sich zunehmend die Verbindung in den Zwischenschichten, was weitere Reaktionen und Prozesse stoppt. „Wir brauchen dringend solche quantitativen Ergebnisse, um Batterien weiter zu verbessern“, sagt Mantouvalou. Darüber hinaus ist das Gerät im BLiX-Labor auch im Rahmen von SyncLab für andere Experimente an anderen Materialien einsetzbar.

HZB / JOL

Anbieter des Monats

Dr. Eberl MBE-Komponenten GmbH

Dr. Eberl MBE-Komponenten GmbH

Das Unternehmen wurde 1989 von Dr. Karl Eberl als Spin-off des Walter-Schottky-Instituts der Technischen Universität München gegründet und hat seinen Sitz in Weil der Stadt bei Stuttgart.

Content-Ad

Park FX200 | Das fortschrittlichste AFM für 200-mm-Proben

Park FX200 | Das fortschrittlichste AFM für 200-mm-Proben

Das Park FX200 ist ideal für Forschung und Industrie zur automatisierten Messung von bis zu 200mm großen Proben und bietet bedeutende Fortschritte in der AFM-Technologie

Meist gelesen

Themen