Wie Nano-Gold durch Membranen wandert
Neue Untersuchungen weisen auf bislang unzureichende Abschätzungen von Nanotoxizität hin.
Die OECD berichtete jüngst, dass Nanopartikel in mehr als 1300 kommerziellen Produkten enthalten sind, deren potenziell toxische Wirkung ausgeblendet wird. Die Mechanismen, wie diese Partikel durch menschliches Gewebe wandern, sind noch weitestgehend unverstanden. Ein Team aus spanischen und saarländischen Physikern konnte nun weltweit erstmals in Echtzeit beobachten, wie eine bestimmte Art von Nanopartikeln durch eine künstliche Zellwand wandert. Damit haben sie den Grundstein für weitere Forschungen gelegt, die im sicheren Umgang mit den winzigen Teilchen helfen sollen.
Abb.: Lipidbeschichtete, hydrophobe Gold-Nanopartikel durchqueren eine Doppellage. (Bild: V. Baulin)
Dadurch, dass verlässliche Methoden fehlen, um Nanopartikel zu überwachen, und dass es eine unüberschaubare Zahl von Mechanismen gibt, die potenziell zu toxischen Wirkungen der Nanopartikel führen könnten, entstehen widersprüchliche Vorschriften im Umgang mit Nanotoxizität: Beispielsweise können manche Nanopartikel in Hautcrèmes nicht durch die menschliche Haut dringen, sehr wohl aber durch die Lunge oder die Nasenschleimhaut. Im Detail ist es immer noch nicht klar, wie manche Nanopartikel mit menschlichem Gewebe und Barrieren interagieren.
Eine enorme Schwierigkeit besteht in der Herausforderung, einzelne Nanopartikel sichtbar zu machen. Objekte auf Nanoebene sind unterhalb des Auflösungsvermögens optischer Mikroskope. Daher müssen Wissenschaftler spezielle Techniken verwenden, um Vorgänge auf der Nanoebene beobachten zu können. Eine weitere Herausforderung besteht darin, dass sich die winzigen Partikel ständig fortbewegen: Die Vorgänge, in denen Nanopartikel eine Rolle spielen, dauern oft nur Sekundenbruchteile. Die Messmethode müsste also in der Lage sein, solch schnelle Vorgänge aufzulösen.
Basierend auf diesen Grundgedanken hat ein Team aus theoretischen Physikern der spanischen Universität Tarragona um Vladimir Baulin ein Forschungsprojekt entworfen, um die Wechselwirkung zwischen Nanopartikeln und Phospholipid-
An dieser Stelle nahm Vladimir Baulin mit der Experimentalphysikgruppe um Ralf Seemann von der Universität des Saarlandes Kontakt auf, um das Modell experimentell bestätigen zu lassen. Die Spezialisten für biophysikalische Vorgänge an Grenzflächen in Ralf Seemanns Gruppe, Jean-
Fleury und sein Team konnten nun weltweit zum ersten Mal mithilfe einer Mischung aus Fluoreszenzmikroskopie und elektrophysiologischer Messmethoden einzelne Goldpartikel in Echtzeit auf ihrem Weg durch die Doppellage beobachten. Wie die Modelle der spanischen Forscher vorhersagten, beobachteten die Physiker aus dem Saarland, dass die Nanopartikel in die Doppellage eindringen konnten, indem sie ihre Phospholipidhülle in der künstlichen Doppellage abstreiften. Nanopartikel mit einem Durchmesser von sechs oder mehr Nanometern, was in etwa die Dicke einer typischen Doppellage entspricht, sind in der Lage, diese Doppellage binnen weniger Millisekunden wieder zu verlassen. Kleinere Nanopartikel hingegen bleiben in der Mitte der Doppellage gefangen.
Die Beobachtung, dass Nanopartikel blitzschnell in der Lage sind, Doppellagen wie sie zum Beispiel menschliche Zellen umgeben, zu durchqueren, dürfte die Sicherheitsbedenken gegenüber Nanopartikeln weiter steigen lassen und führt vielleicht dazu, Sicherheitsnormen im Umgang mit Nanopartikeln zu überarbeiten und zu verfeinern, so die Schlussfolgerung der Forscher aus Spanien und dem Saarland.
U. Saarland / DE










