18.08.2010

Wie viel Masse braucht man für ein Schwarzes Loch?

Astronomen beobachten einen Stern, der mit vierzigfacher Sonnenmasse zum Neutronenstern wird, und damit gängige Theorien in Frage stellt.

?

Mithilfe des Very Large Telescope der ESO haben europäische Astronomen erstmals nachgewiesen, dass sich ein Magnetar – eine seltene Art von Neutronenstern – aus einem Stern mit mindestens der vierzigfachen Masse der Sonne entstanden ist. Das Resultat steht im Widerspruch zu den etablierten Theorien der Sternentwicklung: Derart massereiche Sterne sollten nicht zu einem Magnetar werden, sondern zu einem Schwarzen Loch. Das wirft die fundamentale Frage auf, wie massereich ein Stern tatsächlich sein muss, um sich am Ende seines Lebens in ein Schwarzes Loch zu verwandeln.

Abb.: Künstlerische Darstellung des Magnetars in dem außergewöhnlichen Sternhaufen Westerlund 1 (Bild: ESO/L. Calçada)

Zu ihren Schlussfolgerungen über den Magnetar kamen die Astronomen nach einer eingehenden Untersuchung des ungewöhnlichen Sternhaufens Westerlund 1, in dem sich der Magnetar befindet. Westerlund 1 liegt in einer Entfernung von 16.000 Lichtjahren im Sternbild Ara (der Altar) am Südhimmel. Von früheren Untersuchungen her kannten die Wissenschaftler Westerlund 1 als den uns nächsten “Supersternhaufen”. Er enthält hunderte sehr massereiche Sterne, von denen einige bei einer Größe von etwa 2000 Sonnendurchmessern (das entspricht etwa der Größe der Umlaufbahn des Planeten Saturn) fast eine Million mal so hell leuchten wie die Sonne.

“Befände sich die Sonne im Herzen dieses bemerkenswerten Sternhaufens, wäre der Nachthimmel auf der Erde mit hunderten von Sternen übersät, die so hell wären wie der Vollmond”, erklärt Ben Ritchie, der Erstautor des Fachartikels, in dem die Ergebnisse der Untersuchungen beschrieben werden.

Westerlund 1 ist ein fantastischer Sternenzoo mit einer vielfältigen und exotischen Sternpopulation. Die Sterne in dem Haufen haben eines gemeinsam: Sie haben dasselbe Alter, das auf etwa 3,5 bis 5 Millionen Jahre geschätzt wird, denn alle Sterne in dem Sternhaufen sind gleichzeitig entstanden.

Ein Magnetar ist ein Neutronenstern mit einem unvorstellbar starken Magnetfeld – rund eine Billiarde mal stärker als das der Erde. Das Magnetfeld entsteht zur gleichen Zeit wie der Neutronenstern selbst, also dann, wenn der Vorläuferstern am Ende seines Lebens als Supernova explodiert. Der Sternhaufen Westerlund 1 enthält einen der wenigen Magnetare, die die Astronomen in unserer Heimatgalaxie, der Milchstraße, kennen.

Erst die Zugehörigkeit des Magnetars zum Sternhaufen ermöglicht die Abschätzung, dass sein Vorgängerstern mindestens 40 Sonnenmassen gehabt haben muss. Da die Sterne in Westerlund 1 alle gleich alt sind, muss der Stern, der als Supernova explodierte und den Magnetar als Überbleibsel hinterließ, eine kürzere Lebensspanne gehabt haben als die heute in dem Sternhaufen noch existierenden Sterne. “Die Lebensdauer eines Sterns hängt direkt mit seiner Masse zusammen – je schwerer ein Stern ist, desto kürzer lebt er. Kann man die Masse eines der Sterne in dem Haufen bestimmen, die heute noch existieren, dann können wir mit Sicherheit sagen, dass der kurzlebigere Stern, der zum Magnetar wurde, eine größere Masse gehabt haben muss”, erläutert Koautor und Teamleiter Simon Clark. “Das ist besonders wichtig, weil es bislang noch keine akzeptierte Theorie darüber gibt, wie diese extrem magnetischen Objekte sich überhaupt bilden.”

Die Astronomen haben deshalb die beiden sich gegenseitig bedeckenden Sterne des zu Westerlund 1 gehörigen Doppelsternsystems W13 näher untersucht. In so einem Doppelsternsystem lassen sich die Massen der beiden Sterne direkt aus ihren Umlaufbahnen um ihren gemeinsamen Schwerpunkt ermitteln.

Durch Vergleich mit diesen beiden Sternen hat das Astronomenteam feststellen können, dass der Vorläuferstern des Magnetars mindestens vierzigmal so massereich gewesen sein muss wie die Sonne. Damit haben sie erstmals gezeigt, dass sich Magnetare aus Sternen bilden können, die so massereich sind, dass man eigentlich erwarten würde, dass sie am Ende ihres Lebens zu einem Schwarzen Loch werden. Zuvor hatte man angenommen, dass Sterne mit anfänglich zwischen 10 und 25 Sonnenmassen Neutronensterne bilden würden und Sterne mit mehr als 25 Sonnenmassen Schwarze Löcher.

“Diese Sterne müssen auf irgendeine Weise mehr als neun Zehntel ihrer Masse verlieren, bevor sie als Supernova explodieren, sonst würden sie als Schwarzes Loch enden”, erklärt Koautor Ignacio Negueruela. “So große Massenverlustraten vor der Explosion stellen für die gängigen Modelle der Sternentwicklung eine große Herausforderung dar.” “Es stellt sich daher die schwierige Frage, wie viel Masse ein Stern denn überhaupt haben muss, um schließlich zu einem Schwarzen Loch zusammenzustürzen, wenn dies nicht einmal Sternen mit mehr als 40 Sonnenmassen gelingt“, ergänzt Koautor Norbert Langer.

Der von den Astronomen bevorzugte Entstehungmechanismus für den Magnetar geht davon aus, dass der Vorläufersterns des Magnetars zusammen mit einem Begleitstern entstanden ist. Im Laufe ihrer gemeinsamen Entwicklung kam es zur Wechselwirkung zwischen den Sternen: Dabei wurde Energie aus der Umlaufbewegung der Sterne dazu aufgewendet, die große überschüssige Masse des Vorläufersterns wegzuschleudern. Zwar hat man bislang keinen solchen Begleiter gefunden, was aber darin begründet sein könnte, dass die Supernovaexplosion, bei der sich der Magnetar gebildet hat, das Doppelsternsystem zerstört und beide Sterne mit hoher Geschwindiglkeit aus dem Sternhaufen geschleudert hat.

“Wenn das der Fall ist, könnten Doppelsternsysteme eine entscheidende Rolle in der Sternentwicklung spielen, indem sie den Massenverlust beeinflussen. Für die Schwergewichte unter den Sternen wäre es die ultimative kosmische Diät, bei der sie mehr als 95% ihrer Anfangsmasse verlieren würden”, schließt Clark. 

Max-Planck-Institut für Astronomie

Weitere Infos:

  • Originalveröffentlichung:
    B. W. Ritchie et al.: A VLT/FLAMES survey for massive binaries in Westerlund 1: II. Dynamical constraints on magnetar progenitor masses from the eclipsing binary W13. Astronomy and Astrophysics, im Druck (2010)
  • dx.doi.org/10.1051/0004-6361/201014834

  • Max-Planck-Institut für Astronomie, Heidelberg:
    www.mpia.de/Public/menu_q2.php

AL

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

EnergyViews

EnergyViews
Dossier

EnergyViews

Die neuesten Meldungen zu Energieforschung und -technologie von pro-physik.de und Physik in unserer Zeit.

Meist gelesen

Themen