26.03.2015

Wie viel wiegt ein Kilogramm?

Neue Maße anhand von Naturkonstanten sollen das Internationale Einheitensystem reformieren.

Das Internationale Einheitensystem steht vor einer grundlegenden Neudefinition: Naturkonstanten sollen in Zukunft für alle sieben Basiseinheiten und für alle abgeleiteten Einheiten als definierende Bezugsgrößen dienen. Anfällige Objekte wie das Ur-Kilogramm oder völlig unpraktische Formulierungen wie für die elektrische Stromstärke werden dann ausgedient haben. Die experimentellen Vorbereitungen für diese neuen Definitionen laufen weltweit – und speziell in der Physikalisch-Technischen Bundesanstalt (PTB) – auf Hochtouren. Auf der nächsten Generalkonferenz für Maß und Gewicht im Jahr 2018 soll diese neue Ära dann voraussichtlich offiziell eingeläutet werden. Den großen Nutzen werden Wissenschaft und Hochtechnologie haben. Der Verbraucher wird die Veränderungen in seinen Alltagsmessungen nicht spüren.

Abb.: Im neuen Internationalen Einheitensystem (SI) werden sieben Naturkonstanten als definierende Bezugsgrößen festgelegt. (Bild: PTB)

Wären alle Definitionen bereits so weit wie heute schon die Zeit- und die Längeneinheit, die Sekunde und der Meter, wäre die metrologische Welt vollständig in Ordnung. Bei der Zeitmessung sind Atomuhren seit knapp fünfzig Jahren das Maß der Dinge – aus der Energiestruktur eines Cäsiumatoms lässt sich hier die Sekunde ableiten. Bei der Längenmessung hat der Urmeterstab auch schon seit Jahrzehnten ausgedient und moderneren Definitionen Platz gemacht. Heute ist der Meter diejenige Strecke, die das Licht in einem ganz gewissen Bruchteil von einer Sekunde zurücklegt. Mit der Lichtgeschwindigkeit als unveränderlicher Naturkonstante ist diese Definition perfekt. Sie lässt sich, anders als beim Urmeterstab, nicht verbiegen, verlängern, verkürzen oder anderweitig verändern.

Ebenso hätten es die Metrologen auch gern bei allen anderen Basiseinheiten, speziell bei Kilogramm und Mol, bei Ampere und Kelvin. Die Situationen bei diesen vier sind stark verbesserungswürdig: Das internationale Ur-Kilogramm und seine nationalen Kopien leiden unter Masseschwankungen und unerklärten Driften. Die Kelvin-Temperaturskala ist auf Wasser gebaut – und der definierende Fixpunkt dieser Skala (der so genannte Tripelpunkt) ist sensibel abhängig von der genauen Isotopenzusammensetzung des verwendeten Wassers. Das Ampere ist über eine idealisierte Versuchsanordnung zweier unendlich langer, unendlich dünner Leiter und deren Kraftwirkung aufeinander definiert – ein Anachronismus vor allem im Vergleich zu den Einheiten für die elektrische Spannung und den elektrischen Widerstand, die sich auf Quanteneffekte stützen.

Dieser Zustand bei einigen der Basiseinheiten quält die Metrologen schon seit Jahren und ist damit zugleich enormer Ansporn, nach Lösungen zu suchen. Wie bei Sekunde und Meter könnten Naturkonstanten alles zum Guten wenden. Sobald eine Beziehung zwischen einer Basiseinheit und einer Naturkonstante gefunden ist, kann die alte Definition zu den Akten gelegt werden, sofern (und genau hier ist die eigentliche Aufgabe begründet) eben diese Naturkonstante mit hinreichend guter Genauigkeit bekannt ist, d. h. sich mit eben dieser Genauigkeit messen lässt. In den Laboratorien der Nationalen Metrologieinstitute laufen daher Experimente zur Messung dieser ausgewählten Naturkonstanten. Und mittlerweile sind die Ergebnisse so vielversprechend, dass das Internationale Komitee für Maß und Gewicht auf seiner letzten Generalkonferenz im November 2014 eindeutige Resolutionen für ein neues Einheitensystem verabschiedet hat: Aller Voraussicht nach werden die neuen Definitionen bei der nächsten Generalkonferenz im Jahr 2018 in Kraft treten und damit für alle 55 Mitglieds- und 41 assoziierten Staaten der Meterkonvention verbindlich.

Die verbleibende Zeit bis zur nächsten Generalkonferenz wird nun in allen großen NMI dazu genutzt, die neuen Definitionen experimentell vorzubereiten. In der PTB sind dabei alle Basiseinheiten ein heißes Forschungsobjekt: Die PTB-Ergebnisse bei der Messung der Naturkonstanten für das neue Kilogramm (Planck-Konstante), das neue Mol (Avogadro-Konstante) und das neue Kelvin (Boltzmann-Konstante) sowie die Realisierung des neuen Ampere (Elementarladungen pro Sekunde) sind Schlüsselergebnisse für die Neudefinitionen.

PTB / DE

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

Virtuelle Jobbörse

Virtuelle Jobbörse
Eine Kooperation von Wiley-VCH und der DPG

Virtuelle Jobbörse

Innovative Unternehmen präsentieren hier Karriere- und Beschäftigungsmöglichkeiten in ihren Berufsfeldern.

Die Teilnahme ist kostenfrei – erforderlich ist lediglich eine kurze Vorab-Registrierung.

Meist gelesen

Themen