27.08.2012

Wirbel im Laserlabor

Physiker beschreiben ringförmige Laserstrahlen, deren Intensität in der Mitte des Strahls Null ist.

Es ist ein physikalisches Phänomen, das sich leicht beobachten lässt – am einfachsten in einer gut gefüllten Badewanne. Sobald der Stöpsel gezogen wird, beginnt das Wasser in kreisförmiger Bewegung abzufließen und bildet einen Strudel. Wie in einem Trichter bewegt sich die Flüssigkeit gleichmäßig um eine gedachte Mittelachse. Strudel oder Wirbel lassen sich aber nicht nur in Flüssigkeiten beobachten: zahlreiche Wetterphänomene wie Wirbelstürme oder Windhosen zeigen eindrücklich, dass sich auch Gase ordentlich verwirbeln lassen.

Abb.: Das Argon-Plasma leuchtet in einer Erzeugungskammer. Das Edelgas Argon wird dabei mit einem Femtosekundenlaser beschossen, es entstehen optische Wirbel. (Bild: Jan-Peter Kasper/FSU)

„Weit weniger bekannt sind dagegen Wirbel in der Optik“, sagt Christian Spielmann von der Friedrich-Schiller-Universität Jena. „Aber auch Laserlicht kann Wirbel bilden.“ Gemeinsam mit Kollegen des Jenaer Uni-Instituts für Optik und Quantenelektronik, des Helmholtz-Instituts und des Abbe Center of Photonics in Jena sowie der Universität Sofia hat Spielmann gerade eine Studie zu diesem bisher wenig bearbeiteten Forschungsfeld veröffentlicht.

„Bei optischen Wirbeln aus Laserlicht handelt es sich um ringförmige Laserstrahlen, deren Intensität in der Mitte des Strahls Null wird“, erläutert Michael Zürch. Diese Mitte, die Physiker Singularität nennen, könne man sich als den Abfluss in der Badewanne oder das Auge des Wirbelsturms vorstellen. „Wie ein Korkenzieher verläuft die Wellenfront der Laserstrahlung um diesen Mittelpunkt herum“, so Zürch, Erstautor der aktuellen Publikation. Für optische Wirbel sei eine Reihe von Anwendungen denkbar, etwa als „Laserpinzette“ zur Manipulation winziger Teilchen, zur Teilchenbeschleunigung aber auch zur optischen Nachrichtenübertragung.

Eine wichtige Voraussetzung für diese Anwendungen ist allerdings, dass die optischen Wirbel stabil sind. Um die Stabilität ihrer Laserwirbel zu testen, haben die Jenaer Physiker wirbelnde Laserpulse durch Argon-Gas geschickt. Das Gas wird durch den Laser ionisiert und setzt einen Prozess in Gang, der die Wellenlänge des Laserlichts vom infraroten in den Bereich der Röntgenstrahlung verschiebt. Wie sie anschließend feststellten, ist auch der resultierende Röntgenstrahl ein optischer Wirbel. „Die Laserwirbel erweisen sich damit als deutlich stabiler, als wir dachten“, bilanziert Spielmann.

Der Physiker und sein Team machten außerdem noch eine weitere interessante Beobachtung: Im starken elektromagnetischen Feld entstehen Oberwellen – Vielfache der Grundfrequenz des Laserstrahls – die die ursprüngliche Laserfrequenz überlagern. Bisher war bekannt, dass die Wirbel bei der zweiten und dritten Oberwelle, eine zwei- bzw. dreifache Drehgeschwindigkeit aufweisen. „Wir haben nun erstmals sehr hohe Oberwellen untersuchen können, nämlich Wellen 23. Ordnung“, sagt Michael Zürch. Diese hätten, so die bisherige Theorie, 23 Mal so schnell wie der Ausgangspuls wirbeln müssen. „Das ist aber nicht der Fall.“ Stattdessen rotieren Oberwellen der 23. Ordnung mit exakt derselben Geschwindigkeit wie der ursprüngliche Laserpuls.

Mit diesen durch mehrere unabhängige Messungen bestätigten Ergebnissen erstaunen die Jenaer Wissenschaftler derzeit die Fachwelt. „Diese Beobachtungen stehen im Widerspruch zu den bisherigen theoretischen Vorhersagen“, so Physiker Spielmann. Die neuen Erkenntnisse seien nicht nur für die weitere Erforschung optischer Wirbel relevant, sondern lassen sich prinzipiell auch auf andere physikalische Phänomene, bei denen Wirbel eine Rolle spielen, übertragen.

FSU / PH

Anbieter des Monats

Quantum Design GmbH

Quantum Design GmbH

Forschung lebt von Präzision. Seit über 40 Jahren steht Quantum Design für innovative Messtechnik auf höchstem Niveau – entwickelt in Kalifornien, betreut weltweit. Unsere Systeme sind der Goldstandard in der Materialcharakterisierung und ermöglichen tiefe Einblicke in die magnetischen, thermischen und optischen Eigenschaften von neuen Materialien.

Content Ad

Double-Pass AOM Clusters

Double-Pass AOM Clusters

Versatile opto-mechanical units that enable dynamic frequency control and amplitude modulation of laser light with high bandwidth, that can be combined with beam splitters, monitor diodes, shutters and other multicube™ components.

Meist gelesen

Themen