Womit wir morgen kühlen
Potenzial von Werkstoffen für die magnetische Kühlung bewertet.
Für das Jahr 2060 erwarten Zukunftsforscher einen Paradigmenwechsel beim globalen Energiekonsum: Erstmals wird die Menschheit mehr Energie zum Kühlen aufwenden als für das Heizen. Die Durchdringung unseres Alltags mit Kühlanwendungen hat einen stetig wachsenden ökologischen Fußabdruck zur Folge. Neue Verfahren wie die magnetische Kühlung könnten diese Belastung minimieren. Forscher des Helmholtz-
Die Erzeugung künstlicher Kälte mittels konventioneller Gaskompression steht seit rund hundert Jahren für Haushaltsanwendungen zur Verfügung. Die Technologie hat sich in dieser Zeit jedoch kaum verändert. Nach Schätzungen von Experten sind heute etwa eine Milliarde darauf basierender Kühlschränke weltweit im Einsatz, Tendenz zunehmend. „Die Kühltechnik gilt mittlerweile als größter Stromverbraucher in den eigenen vier Wänden. Ebenso problematisch ist die Umweltbelastung, die die eingesetzten Kühlmittel mit sich bringen“, beschreibt Tino Gottschall vom HZDR seine Motivation.
Zum Herzstück künftiger Kühltechnologien könnte der magnetokalorische Effekt werden: Bestimmte Metalle und Legierungen ändern schlagartig ihre Temperatur, wenn sie einem Magnetfeld ausgesetzt werden. Aus der Forschung ist bereits eine ganze Reihe solcher magnetokalorischer Substanzen bekannt. „Ob sie sich auch für massenhaft verbreitete Haushaltsanwendungen empfehlen, ist jedoch eine andere Frage“, sagt Oliver Gutfleisch von der TU Darmstadt.
Zu ihrer Klärung trugen die Wissenschaftler Daten zu Stoffeigenschaften zusammen. Jedoch stießen sie dabei schnell auf Schwierigkeiten. „Besonders überrascht waren wir, dass überhaupt nur wenige Ergebnisse aus direkten Messungen in der Fachliteratur zu finden sind“, berichtet Gottschall. „Meistens wurden diese Kenngrößen lediglich indirekt aus der beobachteten Magnetisierung berechnet. Wir stellten dabei fest, dass die Messbedingungen wie die Stärke und das Profil des angelegten Magnetfelds bis hin zum Messregime nicht miteinander vergleichbar sind – und damit auch nicht die erzielten Ergebnisse.“
Um diese Unstimmigkeiten bei den bisher publizierten Stoffparametern auszuräumen, legten die Forscher ein aufwändiges Messprogramm auf, das die ganze Bandbreite der derzeitig aussichtsreichsten magnetokalorischen Werkstoffe und deren relevante Materialeigenschaften abdeckt. Durch die Kopplung von hochgenauen Messungen und thermodynamischen Betrachtungen konnten die Wissenschaftler in sich konsistente Stoffdatensätze generieren. Sie präsentieren mit ihrer Arbeit nun einen soliden Grundstock an Daten, der die Auswahl zweckmäßiger Materialien für unterschiedliche Anwendungen zur magnetischen Kühlung erleichtern kann.
Die Eignung eines Materials für die magnetische Kühlung wird letztendlich durch verschiedene Kenngrößen bestimmt. Nur bei einer passenden Kombination dieser Parameter kann das Material mit der bewährten Haushaltskühltechnik konkurrieren. „Die erzielte Temperaturänderung bei Raumtemperatur sollte groß sein und sich gleichzeitig möglichst viel Wärme abführen lassen“, benennt Gottschall die hervorstechendsten Eigenschaften der gesuchten Kühlmaterialien von morgen. Für einen Einsatz in zukünftigen Massenanwendungen dürfen die Substanzen außerdem keine schädlichen Eigenschaften für Umwelt und Gesundheit mitbringen. „Sie sollten zudem nicht aus Rohstoffen bestehen, die aufgrund ihrer begrenzten Vorkommen und schweren Ersetzbarkeit in Anwendungen als kritisch eingestuft werden“, ergänzt Gutfleisch. „Dieser Gesichtspunkt kommt bei der Gesamtbewertung technologischer Prozesse oftmals noch zu kurz. Eine Fokussierung auf physikalische Parameter reicht heute nicht mehr aus. Insofern ist die magnetische Kühlung auch ein Paradebeispiel für die grundlegende Herausforderung der Energiewende, die ohne einen nachhaltigen Zugriff auf geeignete Materialien nicht umsetzbar sein wird.“
Bei Raumtemperatur heißt der magnetokalorische Maßstab noch Gadolinium. Wird das Seltenerd-
Trotz der herausragenden Eigenschaften gelten die Aussichten auf eine Verwendung von Gadolinium zu Kühlzwecken im Haushalt als nicht realistisch. Denn das Element zählt zu jenen Seltenerd-
Doch die Forscher fanden auch Kandidaten, deren Komponenten auf absehbare Zeit problemlos verfügbar und die gleichzeitig vielversprechend leistungsfähig sind: Intermetallische Verbindungen aus den Elementen Lanthan, Eisen, Mangan und Silizium etwa, bei denen Wasserstoff im Kristallgitter eingelagert wurde, können Gadolinium hinsichtlich der dem Kühlraum entziehbaren Wärme sogar übertreffen.
Weitere könnten schon bald folgen: Die Forscher vom HZDR und der TU Darmstadt arbeiten intensiv am Ausbau der Materialpalette für die magnetische Kühlung. In enger Zusammenarbeit bereiten Wissenschaftler beider Einrichtungen neue Versuchsreihen zu den Eigenschaften magnetokalorischer Substanzen vor. Am Hochfeld-
HZDR / RK
Weitere Infos
- Originalveröffentlichung:
T. Gottschall et al.: Making a cool choice: the materials library of magnetic refrigeration, Adv. En. Mat. 9, 1901322 (2019); DOI: 10.1002/aenm.201901322 - Hochfeld-Magnetlabor Dresden, Helmholtz-Zentrum Dresden-Rossendorf
- FG Funktionale Materialien (O. Gutfleisch), Materialwissenschaft, Technische Universität Darmstadt