Zeitkristall bringt Licht in Schwung
Entdeckung hat erstmals starke Wellenverstärkung in photonischen Zeitkristallen ermöglicht.
Photonische Zeitkristalle, deren Eigenschaften sich periodisch ändern, versprechen wesentliche Fortschritte in Mikrowellentechnik, Optik und Photonik. Forscher am Karlsruher Institut für Technologie haben jetzt zusammen mit Partnern an der Aalto University und der Stanford University erstmals einen zweidimensionalen photonischen Zeitkristall hergestellt und wichtige Anwendungen demonstriert. Ihr Ansatz vereinfacht die Herstellung photonischer Zeitkristalle und kann die Effizienz künftiger Kommunikationssysteme verbessern.
Bisher konzentrierte sich die Forschung im Bereich der photonischen Zeitkristalle auf Volumenmaterialien, das heißt dreidimensionale Strukturen. Die Realisierung von photonischen Zeitkristallen in solchen Materialien stellt aber eine enorme Herausforderung dar und die Experimente gingen bisher nicht über Modellsysteme hinaus. Zu praktischen Anwendungen dieser dreidimensionalen Strukturen kam es noch nicht.
Bei dem jetzt hergestellten zweidimensionalen photonischen Zeitkristall handelt es sich um eine sehr dünne Schicht eines solchen Metamaterials. „Wir haben festgestellt, dass die Reduktion der Dimensionalität von einer 3D- auf eine 2D-Struktur die Implementierung erheblich vereinfacht. Dadurch wurde es möglich, photonische Zeitkristalle zu realisieren“, erklärt Xuchen Wang vom KIT. Das Team hat eine zweidimensionale elektromagnetische Struktur entwickelt und synthetisiert. Diese enthält periodisch in der Zeit eingebettete, abstimmbare Komponenten, die ihre elektromagnetischen Eigenschaften ändern. Durch den Einsatz dieser Struktur gelang es, das theoretisch vorhergesagte Verhalten experimentell zu bestätigen. „Diese Entdeckung hat erstmals eine starke Wellenverstärkung in photonischen Zeitkristallen ermöglicht“, erläutert Wang.
Die wegweisende Entwicklung ermöglicht Fortschritte in verschiedenen Technologien, beispielsweise bei der drahtlosen Kommunikation, bei integrierten Schaltkreisen und bei Lasern. Durch die Verstärkung elektromagnetischer Wellen können drahtlose Sender und Empfänger künftig leistungsfähiger und effizienter werden. Außerdem kann die Beschichtung von Oberflächen mit zweidimensionalen photonischen Zeitkristallen den Signalabfall bei der drahtlosen Übertragung verringern. Dieser stellt häufig einen Engpass dar. Die Verwendung von zweidimensionalen photonischen Zeitkristallen kann zukünftig auch die Konstruktion von Lasern vereinfachen, da komplexe Spiegelsysteme, wie sie normalerweise in Laserresonatoren eingesetzt werden, nicht mehr erforderlich sind.
Eine weitere wichtige Anwendung ergibt sich aus der Erkenntnis, dass photonische Zeitkristalle in 2D nicht nur die eintreffenden elektromagnetischen Wellen im freien Raum verstärken, sondern auch Oberflächenwellen, die für die Kommunikation zwischen elektronischen Komponenten in integrierten Schaltkreisen verwendet werden. Oberflächenwellen leiden unter Verlusten durch Absorption im Material, wodurch die Signalstärke verringert wird. „Durch den Einsatz von zweidimensionalen photonischen Zeitkristallen, die das Ausbreitungsmedium bedecken, lässt sich die Oberflächenwelle verstärken, was die Kommunikationseffizienz verbessert“, sagt Wang.
KIT / RK
Weitere Infos
- Originalveröffentlichung
X. Wang et al.: Metasurface-based realization of photonic time crystals, Sci. Adv. 9, eadg7541(2023); DOI: 10.1126/sciadv.adg7541 - Photonik, Institut für theoretische Festkörperphysik, Karlsruher Institut für Technologie
Weitere Beiträge
- Kontinuierlicher Zeitkristall (Pro-physik.de Nachrichten, 15. Juni 2022)
- M. Knap, Auf der Suche nach der kristallisierten Zeit, Physik Journal, Juni 2017, S. 22 PDF