25.06.2010

Zögerliche Elektronen

Bei der Fotoemission wurde ein Zeitversatz gemessen, der das bisher kürzeste natürliche Intervall darstellt.

Bei der Fotoemission wurde ein Zeitversatz gemessen, der das bisher kürzeste natürliche Intervall darstellt.

Anfang des letzten Jahrhunderts revolutionierte die Entdeckung des Photoelektrischen Effekts die Physik. Die Quantenmechanik war geboren. Die Anregung und Photoemission von Elektronen in Atomen durch Licht, ist heute noch immer eines der bedeutendsten Phänomene der Quantenphysik. Man nimmt an, dass das Elektron nach der Absorption eines Photons ohne Verzögerung freigesetzt wird. Jetzt hat ein internationales Team vom Labor für Attosekundenphysik (LAP) jedoch festgestellt, dass Elektronen, die sich in verschiedenen Orbitalen in Neon-Edelgasatomen befinden, erst mit einer Zeitverzögerung aus dem Atom austreten. Mit dabei in der Kooperation waren Forscher des Max-Planck-Instituts für Quantenoptik (Garching), der Ludwig-Maximilians-Universität München, der Technischen Universität Wien, der Univ. Athen, und der King-Saud-Universität (Riad, Saudi-Arabien).

Abb.: Stoppuhr für eine elektronische Startverzögerung: Der innere blau dargestellte Attosekunden-Laserpuls schlägt bei der Fotoemission Elektronen aus Neon-Atomen heraus, mit dem roten Strahl wird die relative Startzeit von zwei unterschiedlichen Elektronen gemessen. (Bild: Thorsten Naeser / MPI für Quantenoptik)

Messung durch synchronisierte Pulse

Bei ihren Experimenten schickten die Physiker hochenergetische Laserpulse mit der Dauer von rund vier Femtosekunden im nahen Infrarot (NIR) auf die Edelgasatome. Zu dem Laserpuls synchronisierten die Forscher einen weiteren Lichtblitz, der weniger als 180 Attosekunden dauerte und dessen Wellenlänge sich im Extremen Ultraviolett (XUV) des Spektrums befindet. Mit dem Attosekunden-Lichtblitz lösten die Physiker die Elektronen aus den Orbitalen. Dabei sorgte der Lichtblitz dafür, dass entweder Elektronen aus dem äußeren 2p- oder dem näher zum Atomkern liegenden 2s-Orbital die Atome verließen. Mit dem synchronisierten Femtosekunden-Laserpuls zeichneten die Physiker dann auf, wann die rasenden Elektronen das Atom verlassen haben. Denn sobald ein Elektron nun das Atom verlässt, spürt es das schwingende elektromagnetische Feld des infraroten Pulses. Je nachdem, ob das Elektron bei seinem Austritt aus dem Atom in ein Tal der infraroten Laserwelle fällt oder auf einen Berg trifft, wird es ein wenig beschleunigt oder abgebremst. In welche Richtung die Beschleunigung auftritt, hängt davon ab, wie die Lichtwellen der beiden Pulse zusammenfallen, wenn sie auf das Atom treffen. Das können die Forscher sehr genau steuern. Bei den Messungen stellte sich heraus, dass trotz zeitgleicher Anregung der Elektronen, diese das Edelgasatom mit einem Zeitversatz von rund 20 Attosekunden verließen. „Eines der Elektronen verlässt das Atom früher als das andere. "Damit konnten wir zeigen, dass Elektronen nach Anregung durch Licht kurz zögern, bevor Sie das Atom verlassen", erklärt Martin Schulze, Wissenschaftler im LAP-Team.

Elektronen halten sich gegenseitig fest

Herauszufinden, was dieses Zögern bewirkt, war auch eine Herausforderung an die theoretischen Physiker des LAP-Teams um Vladislav Yakovlev und seine Kollegen von der TU Wien (Österreich) und der National Hellenic Research Foundation (Griechenland). Sie konnten mit aufwändigen Berechnungen den Effekt qualitativ bestätigen, kamen allerdings auf einen zeitlichen Versatz von nur fünf Attosekunden. Die Ursache dieser Diskrepanz dürfte in der Komplexität des Neonatoms liegen, das neben dem Kern aus zehn Elektronen besteht. "Der Rechenaufwand für das gesamte Atommodell unter Einbezug aller Wechselwirkungen zwischen allen Elektronen übersteigt die Rechenkapazität von heutigen Supercomputern", erklärt Yakovlev. Immerhin konnten diese Untersuchungen die wahrscheinliche Ursache für das "Zögern" der Elektronen zu Tage fördern. Die Forscher gehen davon aus, dass die Elektronen nicht nur mit ihrem Atomkern interagieren, sondern sie sich ebenso untereinander beeinflussen. "Die Elektron-Elektron-Wechselwirkung kann dazu führen, dass es ein Weilchen dauert, bevor das von der einfallenden Lichtwelle geschüttelte Elektron von seinen Artgenossen losgelassen wird und das Atom verlassen darf", sind sich Schultze und Yakovlev einig.

"Unsere Ergebnisse bedeuten einen weiteren wichtigen Einblick in die Wechselwirkungen von Elektronen in Atomen", erläutert Ferenc Krausz, in dessen Abteilung am Max-Planck-Institut für Quantenoptik die Experimente vorgenommen wurden. Solche, bis heute nur unzureichend verstandenen Prozesse, haben entscheidenden Einfluss auf das Verhalten von Elektronen in den winzigsten Dimensionen. Elektronenbewegungen spielen bei allen elementaren Abläufen biologischer und chemischer Prozesse eine bedeutende Rolle. Ebenso bestimmen sie die Geschwindigkeit von Mikroprozessoren, den Herzstücken von Computern. Dafür ist die schnellste Messtechnik der Welt gerade gut genug: der beobachtete 20-Attosekunden-Versatz in der Austrittzeit der Elektronen ist das kürzeste jemals gemessene Zeitintervall in der Natur.

Thorsten Naeser/Max-Planck-Gesellschaft/PH

Weitere Infos

Virtuelle Jobbörse

Virtuelle Jobbörse
Eine Kooperation von Wiley-VCH und der DPG

Virtuelle Jobbörse

Innovative Unternehmen präsentieren hier Karriere- und Beschäftigungsmöglichkeiten in ihren Berufsfeldern.

Die Teilnahme ist kostenfrei – erforderlich ist lediglich eine kurze Vorab-Registrierung.

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

Meist gelesen

Themen