Freie-Elektronen-Laser wie die Linac Coherent Light Source (LCLS) in Stanford eröffnen vielfältige Experimentiermöglichkeiten (vgl. S. 31, Bild: LCLS).
Physik Journal 5 / 2015
Meinung
Inhaltsverzeichnis
Aktuell
USA
Gammastrahlenobservatorium eingeweiht / Freier Zugang gefordert / Gravitationswellen an der Grenze / DUNE statt LBNE
Leserbriefe
High-Tech
Im Brennpunkt
Teleportation im Doppelpack
Mit einer technischen Meisterleistung ist es gelungen, Spin- und Bahndrehimpuls eines Photons auf ein anderes zu teleportieren.
Überblick
Das Universum aus Sicht des Neutrons
Experimente mit Neutronen ergänzen Hochenergieexperimente an Beschleunigern, um Rätsel aus dem frühen Universum zu lösen.
Unser heutiges Wissen über die Entwicklung des Universums ist geprägt durch das Standardmodell der Kosmologie und der Teilchenphysik. Neben Experimenten an Beschleunigeranlagen bzw. in Untergrundlaboren dienen vor allem Präzisionsexperimente bei sehr niedrigen Energien dazu, Aussagen zu Vorgängen im frühen Universum zu treffen. Hierbei spielt das Neutron aufgrund seiner Eigenschaften eine wichtige Rolle...
Die Standardmodelle der Kosmologie und der Teilchenphysik erlauben Aussagen über die Existenz physikalischer Abläufe und ihre Zusammenhänge, die unsere Vorstellung über die Geschichte des Universums prägen. Dabei extrapolieren wir die Theorie in Bereiche der Temperatur, der Energiedichte und räumlicher Dimensionen, die experimentell direkt nicht zugänglich sind. Dieses gewagte Unterfangen wird jedoch durch Beobachtungen aus dem Labor und Betrachtungen des Himmels gestützt. Das Standardmodell beruht konzeptionell auf Annahmen zur räumlichen Dimensionalität, Brechung fundamentaler Symmetrien (z. B. CP) und Existenz Dunkler Materie. Hierzu wurden bisher keine oder nur unzureichende experimentelle Antworten gefunden. Andere Stützpfeiler der Kosmologie sind die Details der kosmischen Hintergrundstrahlung, das genaue Verständnis der primordialen Nukleosynthese sowie die Existenz des Big Bang. Alle diese Konzepte betreffen direkt oder indirekt die ersten drei Minuten unseres Universums.
Wie aber können wir diese Hypothesen stützen oder präzisere Aussagen zu Schlüsselvorgängen im sehr frühen Universum machen? Neben astronomischen Beobachtungen sind diese Fragen vor allem mit dem Verständnis des Mikrokosmos verbunden. Hier spielen Experimente an Beschleunigeranlagen (Symmetrieuntersuchungen) oder in Untergrundlaboratorien (Suche nach Dunkler Materie) sowie Präzisionsexperimente bei sehr niedrigen Energien eine Schlüsselrolle. Neutronen sind dabei aufgrund ihrer Eigenschaften – wie der elektrischen Neutralität, ihrer im Vergleich zu Atomen kleinen elektrischen Polarisierbarkeit sowie ihrer Lebensdauer von fast 15 Minuten – ideale Untersuchungsobjekte. Zudem sind sie in der Natur zahlreich vorhanden, wenn auch immer nur in gebundener Form. Wie aber können wir mit Neutronen unsere Vorstellung von den Vorgängen im frühen Universum untermauern? Wir wollen dazu im Folgenden spezifische Fragestellungen diskutieren sowie Messkonzepte und ihre experimentelle Umsetzung vorstellen. Alle diese Präzisionsmessungen unterliegen einigen Grundvoraussetzungen wie hoher Energieauflösung, hoher Sensitivität und Reduktion von Falscheffekten. Hohe Energieauflösung erfordert lange Beobachtungszeiten bei stabilen Bedingungen, hohe Sensitivität verlangt hohe Empfindlichkeit für kleine Messeffekte bei kleinem statistischen Rauschen des Messsignals, und die Vermeidung von Falscheffekten stellt höchste Anforderungen an die Apparatur...
Nichtlineare Optik mit Röntgenlicht
Freie-Elektronen-Laser eröffnen mit ihren hohen Intensitäten vielfältige Experimentiermöglichkeiten.
Freie-Elektronen-Laser zählen zu den intensivsten Röntgenquellen und erlauben es erstmals, nichtlineare optische Effekte mit Röntgenlicht zu untersuchen – aufgrund der extrem kleinen Wechselwirkungsquerschnitte und der direkten Kopplung ans elektronische Kontinuum allerdings mit deutlichen Unterschieden zur nichtlinearen Optik mit sichtbaren Licht. Nach ersten grundlegenden Untersuchungen stehen nun die Entwicklung neuer nichtlinearer spektroskopischer Methoden und der Nachweis nichtlinearer optischer Prozesse in Festkörpern im Vordergrund.
Mit der Inbetriebnahme der Freie-Elektronen-Laser (FEL) FLASH in Deutschland [1], LCLS in den USA [2] und SACLA in Japan [3] stehen hochintensive Quellen für Röntgenstrahlung mit Wellenlängen von 10 bis 0,06 Nanometer zur Verfügung. Im Vergleich zu den bislang modernsten Speicherringquellen wie PETRA III am DESY in Hamburg liefern FELs eine um neun Größenordnungen bessere Spitzenbrillanz – ein Maß für die spektrale Qualität, Intensität und Divergenz des Röntgenstrahls. Für die orts- und zeitaufgelöste Untersuchung von elektronischer und nuklearer Dynamik sind es vor allem die kurzen Pulse im Femtosekunden-Bereich, die FELs attraktiv für Anwendungen machen. Auf dieser Zeitskala läuft das Aufbrechen und Bilden von chemischen Bindungen – die fundamentalen Prozesse, auf die chemische Reaktionen zurückzuführen sind – ebenso ab wie kohärenter Ladungs- und Energietransport oder relevante Prozesse in der Photosynthese. Diese lassen sich nun durch ultrakurze Röntgenpulse mit spektroskopischen Methoden oder durch Röntgenbeugung untersuchen. Darüber hinaus glänzen FELs mit Spitzenintensitäten, die jene an Speicherringquellen um zehn Größenordnungen übertreffen. Damit eröffnen FELs nicht nur neue Möglichkeiten für die Strukturbestimmung durch Röntgenbeugung an Nanokristallen [4], an einzelnen Zellen und vielleicht künftig auch an einzelnen Molekülen, sondern an ihnen lassen sich auch erstmals nichtlineare optische Effekte mit Röntgenlicht realisieren.
Den Begriff „nichtlinear“ wollen wir vorerst ganz allgemein als die Wechselwirkung eines Quantensystems mit mehr als einem Photon definieren: Im Gegensatz zu Speicherringquellen, an denen die Wechselwirkungswahrscheinlichkeiten pro Atom und pro Puls im Bereich von 10–7 liegen (Infokasten „Ionisationswahrscheinlichkeiten“), kann ein einziges Atom über die Dauer eines fokussierten FEL-Pulses mit nahezu hundertprozentiger Wahrscheinlichkeit mit mehr als einem Photon in Wechselwirkung treten. Dies kann zu erhöhten „Strahlenschäden“ als Folge von Mehrfachionisation der Probe führen und damit die elektronische Struktur verändern. Die Messdauer mit intensiver Röntgenstrahlung muss daher so kurz gehalten werden, dass eine Veränderung oder Zerstörung der Probe das Messergebnis nicht beeinflusst. Die hohen Intensitäten eröffnen darüber hinaus neue Möglichkeiten für nichtlineare spektroskopische Methoden im Röntgenbereich, um elektronische Strukturveränderungen z. B. bei der Photosynthese zu untersuchen...
Physik im Alltag
Menschen
„Die Fachlaufbahn bietet mir eine riesige Bandbreite.“
Interview mit Michael Totzeck
Bücher/Software
DPG
Tagungen
Green’s Functions in Ab Initio Electronic Structure Calculations of Solids: From Implementations to Applications
584. WE-Heraeus-Seminar