Aerodynamik trudelnder Bierdeckel
Physiker finden genaue Ursachen für die instabilen Flugbahnen.
Bierdeckel schützen den Tisch vor unschönen Feuchtigkeits-Ringen. Es soll aber auch vorkommen, dass sie als Wurfgeschosse zweckentfremdet werden. Meist mit wenig Erfolg: Schon nach kurzer Zeit verlässt die Pappunterlage nämlich ihre Bahn, trudelt zur Seite und fällt zu Boden. Diesem Phänomen sind nun Physiker vom Helmholtz-Institut für Strahlen- und Kernphysik und des Argelander Instituts für Astronomie der Universität Bonn nachgegangen. Demnach ist das Verhalten des Deckels unausweichlich, zumindest bei der üblichen Wurftechnik: Nach spätestens 0,45 Sekunden beginnt er unweigerlich abzudriften. Spielkarten kommen schon nach 0,24 Sekunden auf die schiefe Bahn, CDs erst nach 0,8 Sekunden.
Grund ist das Zusammenspiel von Gravitation, Auftrieb und Drehimpuls-Erhaltung: Einerseits kippt der Deckel durch die Schwerkraft schon kurz nach dem Wurf etwas nach hinten. Er bekommt also einen Anstellwinkel, ähnlich wie ein landendes Flugzeug. Diese Neigung sorgt im Luftstrom für Auftrieb. „Allerdings greift die Auftriebs-Kraft nicht im Zentrum des Deckels an, sondern im vorderen Drittel“, erklärt Physikdoktorand Johann Ostmeyer, der die Idee zu der Studie hatte. Normalerweise würde sich die runde Pappe daher bald überschlagen. Das tut sie auch tatsächlich – aber nur, wenn sie eher unkonventionell geworfen wurde.
„Meist wird ein Bierdeckel beim Wurf in Drehung versetzt, ähnlich wie ein Frisbee“, sagt Christoph Schürmann vom Argelander-Institut für Astronomie der Universität Bonn. „Er wird so zu einer Art Kreisel.“ Diese Rotation stabilisiert den Flug und verhindert das Überschlagen. Stattdessen führt die Auftriebskraft dazu, dass der Deckel zur Seite abdriftet – nach rechts, wenn er linksherum rotiert; andernfalls nach links. Gleichzeitig richtet er sich auf – er liegt also nicht mehr parallel zum Boden, sondern steht in der Luft, wie ein rotierendes Rad. In dieser Position hat der Deckel einen Backspin – würde er tatsächlich wie ein Rad auf dem Boden stehen, würde er also zum Ausgangspunkt zurücklaufen. Im Flug verliert er nun schnell an Höhe und fällt zu Boden. Dieser Ablauf ist für alle flachen, runden Objekte charakteristisch.
Die Idee zu der Studie entstand bei einem Ausflug des Physik-Show-Teams der Universität Bonn nach München. Bei einem gemeinsamen Kneipenbesuch der Beteiligten kam die Frage auf, warum sich fliegende Bierdeckel so verhalten, wie sie es tun. Nach ihrer Rückkehr gingen die Physiker diese Frage systematisch an: Sie entwarfen eigens eine Bierdeckel-Wurfmaschine und zeichneten die Flüge mit einer Hochgeschwindigkeits-Kamera auf. So konnten sie kontrollieren, ob ihre theoretischen Vorhersagen mit den Beobachtungen aus der Praxis übereinstimmten.
„Einen Anwendungsbezug hat das Projekt nicht“, erklärt Carsten Urbach vom Helmholtz-Institut für Strahlen- und Kernphysik der Universität Bonn. „Allerdings ist das Problem für Laien und Physiker gleichermaßen anschaulich. Und es bildet sehr schön den kompletten Prozess ab, in dem die Naturwissenschaften Erkenntnisse gewinnen – von der Beobachtung über die Theorie und ihre experimentelle Überprüfung bis gegebenenfalls hin zu ihrer Anpassung und Weiterentwicklung.“
Am stabilsten und damit weitesten fliegen Bierdeckel übrigens, wenn sie sich sehr rasch drehen – ein Trick, den auch der wohl weltbeste Spielkarten-Werfer Rick Smith Jr. beherrscht, dessen Rekord-Wurfweite mehr als sechzig Meter beträgt. Länger als 0,45 Sekunden bewegen sich aber auch schnell rotierende Bierdeckel nicht geradeaus. „Wer wirklich weit und genau werfen möchte, der sollte die Deckel direkt senkrecht aufrichten und in Rückwärtsdrehung versetzen“, erklärt Ostmeyer.
U. Bonn / JOL
Weitere Infos
- Originalveröffentlichung
J. Ostmeyer et al.: Beer mats make bad frisbees, Eur. Phys. J. Plus 136, 769 (2021); DOI: 10.1140/epjp/s13360-021-01732-1 - Helmholtz-Institut für Strahlen- und Kernphysik (C. Urbach), Universität Bonn