Aggressive Elektronen
Rosetta klärt Prozess, der den rapiden Zerfall von Wasser- und Kohlendioxidmolekülen bewirkt – UV-Photonen nicht alleine zugange.
Die Rosetta-Mission der ESA hat den Kometen im August 2014 erreicht. Seitdem umkreist die Raumsonde den Kometen oder fliegt an ihm vorbei – in Entfernungen von acht bis hin zu einigen Hundert Kilometern. Während dieser Flüge sammelt Rosetta, ausgestattet mit elf wissenschaftlichen Instrumenten, Daten zu allen Aspekten der Kometenumwelt. Eines dieser Geräte, der von der NASA gelieferte Alice-Spektograf, untersucht die chemische Zusammensetzung der Kometenvatmosphäre in langen Ultraviolett-Wellenlängenbereichen. Alice kann so einige der am häufigsten vorkommenden Elemente im Universum aufzuspüren. Dazu gehören Wasserstoff, Sauerstoff, Kohlenstoff und Stickstoff.
Abb.: Wie die Daten des UV-Spektrografen Alice belegen, sind Elektronen und nicht Photonen die Hauptverantwortlichen für das schnelle Aufbrechen von Wasser- und Kohlendioxidmolekülen in der Atmosphäre des Kometen 67P/Tschurjumow-Gerassimenko (; Bild: ESA / ATG medialab / MPS f. OSIRIS Team / NavCam Cons. / Feldman et al.)
Eine Studie beschreibt jetzt Beobachtungen des Alice-Spektographen, die während Rosettas erster vier Monate am Kometen gemacht wurden. In dieser Zeit war die Raumsonde zwischen zehn und achtzig Kilometer vom Mittelpunkt des Kometenkerns entfernt. Dabei konzentrierte sich das Team auf die Beschaffenheit der Wasser- und Kohlendioxidschwaden, die der Komet an seiner Oberfläche ausspeit. Dieses Hervorbrechen wird von der Wärme der Sonne ausgelöst. Dafür analysierten die Wissenschaftler nahe am Kometenkern die Emissionen von Wasserstoff- und Sauerstoffatomen, die ein Ergebnis aufgebrochener Wassermoleküle sind. Ebenso studierten sie Kohlenstoffatome von Kohlendioxidmolekülen.
Demnach werden die Moleküle wahrscheinlich in einem zweistufigen Prozess aufgebrochen: Zunächst trifft ein UV-Photon der Sonne ein Wassermolekül im Kometenkoma und ionisiert es. Dabei löst das Photon ein energetisches Elektron aus dem Molekül heraus. Dieses Elektron trifft dann auf ein anderes Wassermolekül im Koma und spaltet es in zwei Wasserstoff- sowie ein Sauerstoffatom auf. Während dieses Prozesses energetisiert das Elektron die Atome. Diese Atome geben dann ultraviolettes Licht ab, dessen charakteristische Wellenlängen der Alice-Spektograph registriert.
Gleichermaßen führt der Aufprall eines Elektrons auf ein Kohlendioxidmolekül zu einem Aufspalten in Atome und die beobachteten Kohlenstoffemissionen. „Durch die Analyse der relativen Intensitäten der beobachteten atomaren Emissionen konnten wir feststellen, dass wir tatsächlich die ‚Eltern’-Moleküle beobachten, die von Elektronen in unmittelbarer Nähe des Kometenkerns, etwa einen Kilometer von ihm entfernt, aufgebrochen werden, und zwar an dem Ort, an dem sie entstehen“, sagt Teamleiter Paul Feldman, Professor für Physik und Astronomie an der Johns Hopkins University in Baltimore.
Von der Erde oder von erdumkreisenden Observatorien wie dem Hubble-Weltraumteleskop aus können die atomaren Bestandteile von Kometen dagegen nur beobachtet werden, nachdem die Elternmoleküle – zum Beispiel Wasser oder Kohlendioxid – vom Sonnenlicht aufgebrochen worden sind – Hunderte bis Tausende Kilometer vom Kometenkern entfernt. „Diese Entdeckung, über die wir jetzt berichten, kam ziemlich unerwartet“, sagt Alice-Projektleiter Alan Stern vom Southwest Research Institut in Boulder, Colorado, „Es zeigt uns auf, wie wichtig es ist, zu Kometen zu fliegen, um sie aus der Nähe analysieren zu können. Denn diese Entdeckung wäre niemals von einem Observatorium auf der Erde oder in einem Erdorbit gemacht worden, weder von einem existierenden noch von einem geplanten. Und diese Entdeckung verändert unser Wissen über Kometen fundamental.“
„Durch die Analyse der Emissionen von Wasserstoff- und Sauerstoffatomen, die von den Wassermolekülen abgespalten werden, können wir außerdem die Lage sowie die Struktur der Wasserschwaden, die aus der Kometenoberfläche herausbrechen, bestimmen“, ergänzt sein SwRI-Kollege Joel Parker. Das Wissenschaftler-Team vergleicht diese Aufspaltung der Moleküle mit dem Prozess, der für die Schwaden auf Jupiters vereistem Mond Europa vorgeschlagen wurde – mit dem Unterschied, dass die Elektronen am Kometen von Solarphotonen produziert werden. Die Elektronen auf Europa kommen aus Jupiters Magnetosphäre.
Daten, die andere Rosetta-Geräte gesammelt haben, bekräftigen die Alice-Ergebnisse. Zu nennen sind hier MIRO, ROSINA und VIRTIS, die in der Lage sind, die vielen verschiedenen Komabestandteile sowie deren Variationen im Zeitverlauf zu analysieren, sowie Geräte zur Partikelerkennung wie RPC-IES. „Diese frühen Ergebnisse des Alice-Spektografen zeigen, wie wichtig es ist, einen Kometen in unterschiedlichen Wellenlängenbereichen und mit unterschiedlichen Technologien zu untersuchen, um so verschiedene Aspekte der Kometenumwelt zu erforschen“, sagt Matt Taylor, Rosetta-Projektwissenschaftler der ESA, und schließt: „Wir verfolgen derzeit aktiv, wie sich der Komet entwickelt, während er auf seinem Orbit der Sonne immer näher kommt, bis er im August das Perihel erreicht. Wir sehen, wie die Schwaden wegen der zunehmenden Sonnenwärme immer aktiver werden und untersuchen die Auswirkungen der Kometeninteraktion mit dem Sonnenwind.“
ESA / OD