14.04.2020

Am Fuß des Blazars

Aufnahmen des Event Horizon Telescope zeigen Strukturen quer zur Jetrichtung.

Am 10. April 2019 präsentierte die Event Horizon Telescope (EHT)-Kollaboration das erste Bild eines schwarzen Lochs in der Radiogalaxie M 87. Nun gelang es, den Jet eines schwarzen Lochs mit bislang nicht erreichter Bildschärfe zu abzubilden. Die Bilder zeigen, wie ein Strahl aus ionisiertem Gas nahezu mit Licht­geschwindigkeit von einem supermassereichen schwarzen Loch im Zentrum des fernen Quasar 3C 279 ausgestoßen wird. Das internationale Forschungs­team unter Leitung des Wissenschaftlers Jae-Young Kim vom Bonner Max-Planck-Institut für Radioastronomie untersuchte auch die Gestalt des Plasmastrahls nahe seiner Basis. Dort wird vermutlich hochenergetische und variable Gamma­strahlung erzeugt. 
 

Abb.: Jetstruktur im Zentralbereich des Quasars 3C 279 mit jeweils höherer...
Abb.: Jetstruktur im Zentralbereich des Quasars 3C 279 mit jeweils höherer Winkelauflösung im April 2017 (Bild: J.Y. Kim, MPIfR / Boston U. Blazar Program / Event Horizon Telescope Coll.)

Als die EHT-Kollaboration im April 2017 das schwarze Loch im Zentrum der Galaxie M87 beobachtete, nahm sie auch einige andere Objekte ins Visier. Dazu gehört 3C 279, eine Galaxie in rund fünf Milliarden Lichtjahren Entfernung im Sternbild Jungfrau. Wissenschaftler klassifizierten 3C 279 als Quasar mit einer extrem kompakt und lichtstark erscheinenden Zentralquelle. Auch im Falle von 3C 279 vermutet man, dass diese Zentralquelle ein schwarzes Loch mit dem Milliardenfachen der Sonnenmasse ist. Ein Teil des hineinfallenden Materials wird dabei in Form zweier stark gebündelter Jets mit nahezu Licht­geschwindigkeit nach außen geschleudert.

Solche Jets konnte man schon seit längerem beobachten. Besonders die Very Long Baseline Interferometry, VLBI, an deren Weiterentwicklung das Max-Planck-Institut für Radioastronomie maßgeblich beteiligt war, liefert dabei Bilder mit höchster Detailschärfe. Die nun im Rahmen des EHT-Projekts verbundenen Teleskope konnten die bisher erreichte Bildschärfe noch deutlich übertreffen und zeigen Details, die kleiner als ein Lichtjahr sind. Damit wird es möglich, den Jet bis heran an die erwartete Akkretionsscheibe zu verfolgen und die Wechselwirkung zwischen Scheibe und Jet zu beobachten. Es zeigt sich, dass der normalerweise gerade verlaufende Jet an seiner Basis verdrillt erscheint, und zum ersten Mal überhaupt werden Strukturen quer zur Jetrichtung sichtbar, die vermutlich Teile der Akkretions­scheibe sind. Vergleicht man Bilder, die an aufeinander­folgenden Tagen aufgenommen wurden, sieht man, dass sich die Struktur verändert, vielleicht durch Einfall und Zerkleinerung von Materie auf eine rotierende Akkretionsscheibe nebst Ausstoß von Material in Form eines Jets. Ein solches Szenario kannte man bisher nur von Simulations­rechnungen. 

Der Nachwuchswissenschaftler Jae-Young Kim vom Max-Planck-Institut für Radioastronomie (MPIfR), der das Forschungsprojekts leitete, ist begeistert, gleichzeitig aber auch etwas verwundert: „Jedes Mal, wenn ein neues Fenster zur Erforschung des Universums geöffnet wird, kommt etwas Neues dabei heraus. Wir haben nur erwartet, mit unserer superscharfen Aufnahme den Bereich abzubilden, in dem der Jet geformt wird. Was wir zusätzlich beobachten konnten, ist die senkrechte Struktur. Das ist, wie wenn man eine Matroschka-Puppe nach der anderen öffnet. Man glaubt zu wissen, was in der nächsten ist, und in der kleinsten findet sich eine Überraschung.“

Darüber hinaus hat es die Forscher auch erstaunt, dass die Bilder sich auf so kurzer Zeitskala ändern – und zwar nicht nur entlang des Jets, sondern auch quer dazu. „3C 279 war die erste bekannte astronomische Quelle, für deren Jet eine Bewegung mit scheinbarer Überlichtgeschwindigkeit nachgewiesen wurde. Und sie ist fast fünfzig Jahre später immer noch für Überraschungen gut“, sagt Thomas Krichbaum, ebenfalls vom MPIfR, der die Beobachtungen von 3C 279 als Projektleiter konzipiert hat. „Denn querverlaufende scheinbare Bewegungen mit fast zwanzigfacher Licht­geschwindigkeit können nur sehr schwer erklärt werden, vielleicht mit wandernden Stoßfronten oder aber Instabilitäten in einem gekrümmten und vielleicht rotierenden Jet“, fügt er hinzu. 

Die an der Beobachtung im Jahr 2017 beteiligten Radioteleskope waren ALMA, APEX (beide Chile, letzteres gemeinsam betrieben von MPIfR, ESO und dem schwedischen Onsala-Observatorium), das IRAM-30-Meter-Teleskop in Spanien, das James-Clerk-Maxwell-Teleskop (JCMT) und das Submillimeter-Array (beide Hawaii), das Large-Millimeter-Teleskop (Mexiko), das Submillimeter-Teleskop (früher Heinrich-Hertz-Teleskop, Arizona), und das Südpol-Teleskop. 

Die Teleskope wurden mit der Very Long Baseline Interferometrie verbunden. Dadurch werden über die ganze Welt verteilte Einzel­teleskope miteinander verbunden und zusätzlich die Rotation der Erde genutzt, um ein riesiges virtuelles Radioteleskop von der Größe der Erde zu bilden. Mit der Winkelauflösung dieses vernetzten Teleskops wäre es für einen Astronauten auf dem Mond quasi möglich, eine einzelne Apfelsine auf der Erde zu identifizieren. Die Datenanalyse, mit der die Rohdaten von den beteiligten Teleskopen zu einem Bild verbunden werden, erfordert spezielle Computer („Korrelatoren“). Die hierfür eingesetzten Korrelatoren befinden sich am MPIfR in Bonn und am MIT-Haystack-Observatorium in den USA. 

J. Anton Zensus, Direktor am MPIfR und Vorsitzender des EHT-Kollaborationsrats, betont das Ergebnis als eine globale Anstrengung: „Im vergangenen Jahr konnten wir der Welt das erste Bild vom Schatten eines schwarzen Lochs vorstellen. Nun sehen wir unerwartete Veränderungen in der Form des Jets von 3C 279, und wir sind noch längst nicht am Ziel angekommen. Wir arbeiten weiterhin an den Daten von Sagittarius A*, der Zentralquelle unserer Milchstraße und von anderen aktiven. Wie wir im letzten Jahr schon betont haben: das ist erst der Anfang!“

Die für März/April 2020 vorgesehene EHT-Beobachtungs­kampagne musste aufgrund des globalen CoViD-19-Ausbruchs abgesagt werden. Die EHT-Kollaboration legt im Moment die nächsten Schritte sowohl in Hinsicht auf neue Beobachtungen als auch auf die Analyse der bereits aufgenommenen Daten fest. Michael Hecht, Astronom am MIT/Haystack-Observatorium und Vize-Direktor für das EHT-Projekt, stellt abschließend fest: „Wir konzentrieren uns jetzt auf die Veröffentlichung der Daten von 2017 und starten mit der Analyse der Daten, die wir mit einem Teleskop mehr im Folgejahr 2018 aufgenommen haben. Dazu blicken wir voraus auf die nächste Kampagne im März 2021, dann mit einem auf elf Observatorien vergrößerten EHT-Netzwerk.“

MPIfR / DE

Weitere Infos

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

EnergyViews

EnergyViews
Dossier

EnergyViews

Die neuesten Meldungen zu Energieforschung und -technologie von pro-physik.de und Physik in unserer Zeit.

Meist gelesen

Themen