27.04.2009

An den Grenzen des photoelektrischen Effektes

Bei extrem kurzwelliger und sehr intensiver Strahlung scheint die Wechselwirkung zwischen Licht und Materie anders zu sein, als bisher angenommen



Bei extrem kurzwelliger und sehr intensiver Strahlung scheint die Wechselwirkung zwischen Licht und Materie anders zu sein, als bisher angenommen

Über den klassischen Photoeffekt hat Einstein 1905 bewiesen, dass Licht auch Teilchencharakter hat. Doch bei extrem hohen Lichtintensitäten geschehen dabei merkwürdige Dinge. Das haben Wissenschaftler der Physikalisch-Technischen Bundesanstalt (PTB) zusammen mit Kollegen bei FLASH in Hamburg, dem weltweit ersten Freie-Elektronen-Laser (FEL) für weiche Röntgenstrahlung, herausgefunden. Die gängigen Modelle, die auf Einsteins Erkenntnis aufbauen, lauten vereinfacht so: Ein Photon schlägt aus einem Atom ein äußeres Elektron heraus, sofern seine Energie hoch genug ist. Doch bei Wellenlängen von nur 13 Nanometern und hohen Strahlungsintensitäten von mehreren Petawatt pro Quadratzentimeter passiert - zumindest bei manchen Atomen - etwas anderes: Bei Xenon scheint ein ganzes Lichtwellenpaket gleich eine Vielzahl von inneren Elektronen herauszuschlagen. Dieser Effekt ist stark abhängig vom Material und nicht nur von der Art der anregenden Strahlung, wie bisher angenommen. Die Erkenntnisse, die aktuell in dem Fachblatt Physical Review Letters veröffentlicht sind, haben grundlegende Bedeutung für zukünftige Experimente der Materialforschung an den großen neuen Röntgenlaseranlagen der Welt.



Abb.: Photoionisation von Xenon: (a) klassischer photoelektrischer Effekt in der äußeren Elektronenschale bei niedriger Intensität, (b) Einfachionisation in der äußeren Elektronenschale durch hochintensive langwellige Laserstrahlung, (c) direkte Mehrfachionisation in der inneren 4d Elektronenschale durch hochintensive kurzwellige Röntgenlaserstrahlung. (Bild: PTB)


Eigentlich wollten die Wissenschaftler nur Methoden zur radiometrischen Charakterisierung von Röntgenlasern entwickeln. Sie bestrahlten verschiedene Gase, um aus der ionisierenden Wirkung des Lasers verlässliche Rückschlüsse auf dessen Stärke zu ziehen. Das Ziel: mit dem schließlich gut charakterisierten Laser zum Beispiel Spiegel für die EUV-Lithographie zu testen. Die EUV-Lithographie (EUV steht für extremes Ultraviolett) mit Wellenlängen im Bereich von 13 Nanometern gilt als die Technik der Zukunft zur Herstellung von immer kleineren Computerchips.

Doch während ihrer Versuche bei FLASH, dem neuen Freie-Elektronen-Laser (FEL) in Hamburg, mit dem sich zurzeit EUV- und weiche Röntgenstrahlung in der weltweit höchsten Intensität erzeugen lässt, stießen sie unversehens auf Dinge, die die Grundlagen der Physik betreffen.

Beim klassischen photoelektrischen Effekt (Abb. a) tritt ein einzelnes Lichtteilchen (Photon) hinreichender Energie mit einem einzelnen Elektron der Materie in Wechselwirkung. Der Prozess wird durch die Einsteinsche Beziehung (1905) energetisch beschrieben und stellt einen Beleg für die Quantenstruktur des Lichtes dar. Erst bei sehr hohen Intensitäten kommt es zur Multi-Photon-Ionisation, einem Prozess, der im Extremfall von hochintensiven ultrakurzen Lichtblitzen langwelliger Femtosekundenlaser wieder im Wellenbild des Lichtes beschrieben wird (Abb. b). Die entsprechenden theoretischen Modelle scheitern jedoch im kurzwelligen Röntgenbereich, wie die Experimente in Hamburg zeigen, bei denen erstmals im weichen Röntgengebiet Bestrahlungsstärken von mehreren Petawatt pro Quadratzentimeter durch starke Fokussierung erreicht wurden. Die vergleichenden quantitativen Studien belegen, dass der Grad der Wechselwirkung und dabei die Natur des Röntgenlichts maßgeblich durch die Struktur des Atoms und Korrelationen in vor allem inneren Elektronenschalen bestimmt werden. Im Extremfall (Xenon) scheint ein Wellenpaket von Photonen zur simultanen Emission von mehreren inneren Elektronen zu führen (Abb. c).

Die Arbeiten sind Gegenstand einer DFG-geförderten Forschungskooperation der PTB mit dem Deutschen Elektronen-Synchrotron (DESY), der Universität Hamburg sowie dem Ioffe-Institut in St. Petersburg. Untersuchungen dieser Art zur Licht-Materie-Wechselwirkung bei hohen Intensitäten und kurzen Wellenlängen sind von grundlegender Bedeutung für zukünftige Experimente der Materialforschung an den großen neuen Röntgenlaseranlagen in Amerika (LCLS in Stanford), Japan (SCSS bei Spring8) und Europa (FLASH und XFEL in Hamburg).

Physikalisch-Technische Bundesanstalt (PTB)


Weitere Infos:

AL

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

Weiterbildung

Weiterbildungen im Bereich Quantentechnologie
TUM INSTITUTE FOR LIFELONG LEARNING

Weiterbildungen im Bereich Quantentechnologie

Vom eintägigen Überblickskurs bis hin zum Deep Dive in die Technologie: für Fach- & Führungskräfte unterschiedlichster Branchen.

Meist gelesen

Themen